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sine-Gordon equation and Bäcklund transformations 126



Contents vii

4.2.1 Relation between sine-Gordon equation and
surface of constant negative Gauss curvature in R3 126

4.2.2 Pseudo-spherical congruence 129
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Preface

GU Chaohao

The soliton theory is an important branch of nonlinear science. On
one hand, it describes various kinds of stable motions appearing in na-
ture, such as solitary water wave, solitary signals in optical fibre etc.,
and has many applications in science and technology (like optical signal
communication). On the other hand, it gives many effective methods
of getting explicit solutions of nonlinear partial differential equations.
Therefore, it has attracted much attention from physicists as well as
mathematicians.

Nonlinear partial differential equations appear in many scientific prob-
lems. Getting explicit solutions is usually a difficult task. Only in cer-
tain special cases can the solutions be written down explicitly. However,
for many soliton equations, people have found quite a few methods to
get explicit solutions. The most famous ones are the inverse scattering
method, Bäcklund transformation etc.. The inverse scattering method
is based on the spectral theory of ordinary differential equations. The
Cauchy problem of many soliton equations can be transformed to solving
a system of linear integral equations. Explicit solutions can be derived
when the kernel of the integral equation is degenerate. The Bäcklund
transformation gives a new solution from a known solution by solving
a system of completely integrable partial differential equations. Some
complicated “nonlinear superposition formula” arise to substitute the
superposition principle in linear science.

However, if the kernel of the integral equation is not degenerate, it
is very difficult to get the explicit expressions of the solutions via the
inverse scattering method. For the Bäcklund transformation, the non-
linear superposition formula is not easy to be obtained in general. In
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late 1970s, it was discovered by V. B. Matveev that a method given by
G. Darboux a century ago for the spectral problem of second order or-
dinary differential equations can be extended to some important soliton
equations. This method was called Darboux transformation. After that,
it was found that this method is very effective for many partial differen-
tial equations. It is now playing an important role in mechanics, physics
and differential geometry. V. B. Matveev and M. A. Salle published an
important monograph [80] on this topic in 1991. Besides, an interesting
monograph of C. Rogers and W. K. Schief [90] with many recent results
was published in 2002.

The present monograph contains the Darboux transformations in ma-
trix form and provides purely algebraic algorithms for constructing ex-
plicit solutions. Consequently, a basis of using symbolic calculations
to obtain explicit exact solutions for many integrable systems is estab-
lished. Moreover, the behavior of simple and multi-solutions, even in
multi-dimensional cases, can be elucidated clearly. The method cov-
ers a series of important topics such as varies kinds of AKNS systems in
Rn+1, the construction of Bäcklund congruences and surfaces of constant
Gauss curvature in R3 and R2,1, harmonic maps from two dimensional
manifolds to the Lie group U(n), self-dual Yang-Mills fields and the gen-
eralizations to higher dimensional case, Yang-Mills-Higgs fields in 2 + 1
dimensional Minkowski and anti-de Sitter space, Laplace sequences of
surfaces in projective spaces and two dimensional Toda equations. All
these cases are stated in details. In geometric problems, the Lax pair is
not only a tool, but also a geometric object to be studied. Many results
in this monograph are obtained by the authors in recent years.

This monograph is partially supported by the Chinese Major State
Basic Research Program “Frontier problems in nonlinear sciences”, the
Doctoral Program Foundation of the Ministry of Education of China,
National Natural Science Foundation of China and Science Foundation
of Shanghai Science Committee. Most work in this monograph was done
in the Institute of Mathematics of Fudan University.



Chapter 1

1+1 DIMENSIONAL INTEGRABLE
SYSTEMS

Starting from the original Darboux transformation, we first discuss
the classical form of the Darboux transformations for the KdV and
the MKdV equation, then discuss the Darboux transformations for the
AKNS system and more general systems. The coefficients in the evolu-
tion equations discussed here may depend on t. The Darboux matrices
are constructed algebraically and the algorithm is purely algebraic and
universal to whole hierarchies. The Darboux transformations for reduced
systems are also concerned. We also present the relations between Dar-
boux transformation and the inverse scattering theory, and show that
the number of solitons (the number of eigenvalues) increases or decreases
after the action of a Darboux transformation.

1.1 KdV equation, MKdV equation and their
Darboux transformations

1.1.1 Original Darboux transformation
In 1882, G. Darboux [18] studied the eigenvalue problem of a lin-

ear partial differential equation of second order (now called the one-
dimensional Schrödinger equation)

−φxx − u(x)φ = λφ. (1.1)

Here u(x) is a given function, called potential function; λ is a constant,
called spectral parameter. He found out the following fact. If u(x)
and φ(x, λ) are two functions satisfying (1.1) and f(x) = φ(x, λ0) is a
solution of the equation (1.1) for λ = λ0 where λ0 is a fixed constant,
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then the functions u′ and φ′ defined by

u′ = u + 2(ln f)xx, φ′(x, λ) = φx(x, λ) − fx

f
φ(x, λ) (1.2)

satisfy
−φ′

xx − u′φ′ = λφ′, (1.3)

which is of the same form as (1.1). Therefore, the transformation (1.2)
transforms the functions (u, φ) to (u′, φ′) which satisfy the same equa-
tions. This transformation

(u, φ) −→ (u′, φ′), (1.4)

is the original Darboux transformation, which is valid for f �= 0.

1.1.2 Darboux transformation for KdV equation
In 1885, the Netherlandish applied mathematicians Korteweg and de

Vries introduced a nonlinear partial differential equation describing the
motion of water wave, which is now called the Korteweg-de Vries equa-
tion (KdV equation)

ut + 6uux + uxxx = 0. (1.5)

In the middle of 1960’s, this equation was found out to be closely related
to the Schrödinger equation mentioned above [87]. KdV equation (1.5)
is the integrability condition of the linear system

− φxx − uφ = λφ,

φt = −4φxxx − 6uφx − 3uxφ
(1.6)

which is called the Lax pair of the KdV equation. Here u and φ are
functions of x and t. (1.6) is the integrability condition of (1.5). In
other words, (1.5) is the necessary and sufficient condition for (φxx)t =
(φt)xx being an identity for all λ, where (φxx)t is computed from φxx =
(−λ− u)φ (the first equation of (1.6)) and (φt)xx is given by the second
equation of (1.6).

Since the first equation of the Lax pair of the KdV equation is just
the Schrödinger equation, the Darboux transformation (1.2) can also be
applied to the KdV equation, where the functions depend on t. Obvi-
ously the transformation keeps the first equation of (1.6) invariant, i.e.,
(u′, φ′) satisfies

−φ′
xx − u′φ′ = λφ′. (1.7)

Moreover, it is easily seen that (u′, φ′) satisfies the second equation of
(1.6) as well. Therefore, u′ satisfies the KdV equation, which is the
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integrability condition of (1.6). In summary, suppose one knows a solu-
tion u of the KdV equation, solving the linear equations (1.6) one gets
φ(x, t, λ). Take λ to be a special value λ0 and let f(x, t) = φ(x, t, λ0),
then u′ = u + 2(ln f)xx gives a new solution of the KdV equation, and
φ′ given by (1.2) is a solution of the Lax pair corresponding to u′. This
gives a way to obtain new solutions of the KdV equation.

This process can be done successively as follows. For a known solution
u of (1.5), first solve a system of linear differential equations (1.6) and
get φ. Then explicit calculation from (1.2) gives new special solutions
of the KdV equation. Since φ′ is known, it is not necessary to solve any
linear differential equations again to obtain (u′′, φ′′). That is, we only
need algebraic calculation to get (u′′, φ′′) etc.:

(u, φ) −→ (u′, φ′) −→ (u′′, φ′′) −→ · · · . (1.8)

Therefore, we have extended the Darboux transformation for the Schrö-
dinger equation to the KdV equation. The basic idea here is to get the
new solutions of the nonlinear equation and the corresponding solutions
of the Lax pair simultaneously from a known solution of the nonlinear
equation and a solution of its Lax pair by using algebraic and differential
computation. Note that the formula is valid only for f �= 0. If f = 0,
the Darboux transformation will have singularities.

Remark 1 Let ψ1 = φ, ψ2 = φx, Ψ = (ψ1, ψ2)T , then the Lax pair (1.6)
can be written in matrix form as

Ψx =

⎛⎝ 0 1

−λ − u 0

⎞⎠Ψ,

Ψt =

⎛⎝ ux 4λ − 2u

−4λ2 − 2λu + uxx + 2u2 −ux

⎞⎠Ψ.

(1.9)

The transformation φ → φ′ in (1.2) can also be rewritten as a trans-
formation of Ψ, which can be realized via algebraic algorithm only. We
shall discuss this Darboux transformation in matrix form later.

1.1.3 Darboux transformation for MKdV
equation

The method of Darboux transformation can be applied to many other
equations such as the MKdV equation, the sine-Gordon equation etc.
[105]. We first take the MKdV equation as an example. General cases
will be considered in the latter sections.

MKdV equation
ut + 6u2ux + uxxx = 0 (1.10)
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is the integrability condition of the over-determined linear system [2, 119]

Φx = UΦ =

⎛⎝ λ u

−u −λ

⎞⎠Φ,

Φt = V Φ

=

⎛⎝ −4λ3 − 2u2λ −4uλ2 − 2uxλ − 2u3 − uxx

4uλ2 − 2uxλ + 2u3 + uxx 4λ3 + 2u2λ

⎞⎠Φ,

(1.11)
that is, (1.10) is the necessary and sufficient condition for Φxt = Φtx

being an identity. The system (1.11) is called a Lax pair of (1.10) and
λ a spectral parameter. Here Φ may be regarded as a column solution
or a 2 × 2 matrix solution of (1.11).

There are several ways to derive the Darboux transformation for the
MKdV equation. Here we use the Darboux matrix method.

For a given solution u of the MKdV equation, suppose we know a
fundamental solution of (1.11)

Φ(x, t, λ) =

⎛⎝ Φ11(x, t, λ) Φ12(x, t, λ)

Φ21(x, t, λ) Φ22(x, t, λ)

⎞⎠ (1.12)

which composes two linearly independent column solutions of (1.11).
Let λ1, µ1 be arbitrary real numbers and

σ =
Φ22(x, t, λ1) + µ1Φ21(x, t, λ1)
Φ12(x, t, λ1) + µ1Φ11(x, t, λ1)

(1.13)

be the ratio of the two entries of a column solution of the Lax pair (1.11).
Construct the matrix

D(x, t, λ) = λI − λ1

1 + σ2

⎛⎝ 1 − σ2 2σ

2σ σ2 − 1

⎞⎠ (1.14)

and let Φ′(x, t, λ) = D(x, t, λ)Φ(x, t, λ). Then it is easily verified that
Φ′(x, t, λ) satisfies

Φ′
x = U ′Φ′, Φ′

t = V ′Φ′, (1.15)
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where

U ′ =

⎛⎝ λ u′

−u′ −λ

⎞⎠ ,

V ′ =

⎛⎝ −4λ3 − 2u′2λ −4u′λ2 − 2u′
xλ − 2u′3 − u′

xx

4u′λ2 − 2u′
xλ + 2u′3 + u′

xx 4λ3 + 2u′2λ

⎞⎠
(1.16)

with

u′ = u +
4λ1σ

1 + σ2
. (1.17)

(1.15) and (1.16) are similar to (1.11). The only difference is that the
u in (1.11) is replaced by u′ defined by (1.17). For any solution Φ of
(1.11), DΦ is a solution of (1.15), hence (1.15) is solvable for any given
initial data (the value of Φ′ at some point (x0, t0)). In other words,
(1.15) is integrable. The integrability condition of (1.15) implies that u′
is also a solution of the MKdV equation. Using this method, we obtain
a new solution of the MKdV equation together with the corresponding
fundamental solution of its Lax pair from a known one.

The above conclusions can be summarized as follows. Let u be a solu-
tion of the MKdV equation and Φ be a fundamental solution of its Lax
pair. Take λ1, µ1 to be two arbitrary real constants, and let σ be defined
by (1.13), then (1.17) gives a new solution u′ of the MKdV equation,
and the corresponding solution to the Lax pair can be taken as DΦ. The
transformation (u, Φ) → (u′, Φ′) is the Darboux transformation for the
MKdV equation. This Darboux transformation in matrix form can be
done successively and purely algebraically as

(u, Φ) −→ (u′, Φ′) −→ (u′′, Φ′′) −→ · · · . (1.18)

Remark 2 Both (1.9) and (1.11) are of the form

Φx = UΦ, Φt = V Φ (1.19)

where U and V are N × N matrices and independent of Φ. The inte-
grability condition of (1.19) is

Ut − Vx + [U, V ] = 0 ([U, V ] = UV − V U). (1.20)

According to the elementary theory of linear partial differential equations,
the solution of (1.19) exists uniquely for given initial data Φ(x0, t0) = Φ0

if and only if (1.20) holds identically. Here Φ is an N ×N matrix, or a
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vector with N entries. In this case Φ(x, t) is determined by the ordinary
differential equation

dΦ = (U dx + V dy)Φ (1.21)

along an arbitrary path connecting (x0, t0) and (x, t). (1.20) is also called
a zero-curvature condition.

1.1.4 Examples: single and double soliton
solutions

Starting with the trivial solution u = 0 of the MKdV equation, one
can use the Darboux transformation to obtain the soliton solutions. For
u = 0, the fundamental solution of the Lax pair can be obtained as

Φ(x, t, λ) =

⎛⎝ exp(λx − 4λ3t) 0

0 exp(−λx + 4λ3t)

⎞⎠ (1.22)

by integrating (1.11). Take λ1 �= 0 and µ1 = exp(2α1) > 0, then (1.13)
gives

σ = σ1 = exp(−2λ1x + 8λ3
1t − 2α1), (1.23)

hence

D = λI − λ1

cosh v1

⎛⎝ sinh v1 1

1 − sinh v1

⎞⎠ , (1.24)

where
v1 = 2λ1x − 8λ3

1t + 2α1. (1.25)

(1.17) gives the single soliton solution

u′ = 2λ1 sech(2λ1x − 8λ3
1t + 2α1), (1.26)

of the MKdV equation.
(1.26) is called the single soliton solution because it has the following

properties: (i) It is a travelling wave solution, i.e., it is in the form
u′ = f(x − ct); (ii) For any t, limx→±∞ u′ = 0. Speaking intuitively, u′
is near 0 outside a small region, i.e., |u| < 2|λ1| sech K when |2λ1x −
8λ3

1t + 2α1| > K.
The solution of the corresponding Lax pair is

Φ′(x, t, λ) = (Φ′
ij(x, t, λ))

= D(x, t, λ)

⎛⎝ exp(λx − 4λ3t) 0

0 exp(−λx + 4λ3t)

⎞⎠ (1.27)
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where D is given by (1.24).
If we take u′ as a seed solution, a new Darboux matrix can be con-

structed from Φ′ and a series of new solutions of the MKdV equation
can be obtained.

We write down the second Darboux transformation explicitly. Sup-
pose u is a solution of the MKdV equation (1.10), Φ is a fundamental
solution of the corresponding Lax pair (1.11). Construct the Darboux
matrix D = (Dij) according to (1.13) and (1.14) and let σ = σ1. More-
over, take constants λ2 �= 0 (λ2 �= λ1) and µ2 = exp(2α2). According to
(1.13),

σ′
2 =

Φ′
22(x, t, λ2) + µ2Φ′

21(x, t, λ2)
Φ′

12(x, t, λ2) + µ2Φ′
11(x, t, λ2)

. (1.28)

Substituting Φ′ = DΦ into it, we have

σ′
2 =

D21(Φ12 + µ2Φ11) + D22(Φ22 + µ2Φ21)
D11(Φ12 + µ2Φ11) + D12(Φ22 + µ2Φ21)

∣∣∣∣
λ=λ2

=
D21(λ2) + D22(λ2)σ2

D11(λ2) + D12(λ2)σ2
,

(1.29)

where

σ2 =
Φ22(x, t, λ2) + µ2Φ21(x, t, λ2)
Φ12(x, t, λ2) + µ2Φ11(x, t, λ2)

. (1.30)

Starting from u = 0, (1.26) and (1.27) are the single soliton solution
and the corresponding fundamental solution of the Lax pair. Substitut-
ing (1.24), the expression of D, into (1.27), we have

Φ′(x, t, λ) =

⎛⎝ (λ − λ1 tanh v1)eλx−4λ3t − λ1 sech v1e−λx+4λ3t

−λ1 sech v1eλx−4λ3t(λ + λ1 tanh v1)e−λx+4λ3t

⎞⎠ ,

(1.31)
hence

σ′
2 =

−λ1 sech v1 + (λ2 + λ1 tanh v1) exp(−v2)
(λ2 − λ1 tanh v1) − λ1 sech v1 exp(−v2)

, (1.32)

where
v2 = 2λ2x − 8λ3

2t + 2α2, (i = 1, 2). (1.33)

According to (1.17),

u′′ = 4λ1σ1

1 + σ2
1

+ 4λ2σ
′
2

1 + σ′2
2

= 2(λ2
2 − λ2

1)(λ2 cosh v1 − λ1 cosh v2)
(λ2

1 + λ2
2) cosh v1 cosh v2 − 2λ1λ2(1 + sinh v1 sinh v2)

(1.34)
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is a new solution of the MKdV equation. This is called the double
soliton solution of the MKdV equation. This name follows from the
following asymptotic property of the solutions. We shall show that a
double soliton solution is asymptotic to two single soliton solutions as
t → ∞.

Suppose λ2 > λ1 > 0, M is a fixed positive number. Let v1 be
bounded by |v1| ≤ M , then x ∼ ∞ as t ∼ ∞. Since

v2 =
λ2

λ1
v1 − 8λ2(λ2

2 − λ2
1)t + 2α2 − 2λ2α1

λ1
, (1.35)

v2 ∼ +∞ as t ∼ −∞, and

u′′ ∼ −2λ1 sech(v1 − v0) (1.36)

as t → −∞ where

v0 = tanh−1 2λ1λ2

λ2
1 + λ2

2

. (1.37)

If t ∼ +∞, then v2 ∼ −∞, and

u′′ ∼ −2λ1 sech(v1 + v0). (1.38)

Hence, for fixed v1 (i.e., the observer moves in the velocity 4λ2
1), the

solution is asymptotic to one single soliton solution (corresponding to
the parameter λ1) as t ∼ −∞ or t ∼ +∞. However, there is a phase
shift between the asymptotic solitons as t ∼ −∞ and t ∼ +∞. That is,
the center of the soliton (the peak) moves from v1 = v0 to v1 = −v0.

Similarly, if |v2| ≤ M , then

v1 =
λ1

λ2
v2 + 8λ1(λ2

2 − λ2
1)t + 2α1 − 2λ1α2

λ2
(1.39)

implies that v1 ∼ ±∞ as t ∼ ±∞, and

u′′ ∼ 2λ2 sech(v2 + v0), t ∼ −∞,

u′′ ∼ 2λ2 sech(v2 − v0), t ∼ +∞.
(1.40)

Finally, if t ∼ ±∞ and both v1, v2 tend to ±∞ (i.e., the observer moves
in the velocity �= 4λ2

1, 4λ2
2), then u′′ ∼ 0. Therefore, whenever t ∼ +∞ or

t ∼ −∞, u′′ is asymptotic to two single soliton solutions (see Figures 1.1
– 1.3.

This fact means that: (i) a double soliton solution is asymptotic to
two single soliton solutions as t → ±∞; (ii) if two single solitons (the
asymptotic behavior as t → −∞) interact, they will almost recover later
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Figure 1.1. Double soliton solutions of the MKdV equation, t = −1

Figure 1.2. Double soliton solutions of the MKdV equation, t = 0.1

Figure 1.3. Double soliton solutions of the MKdV equation, t = 1

(t → +∞). Both the shape and the velocity do not change. The only
change is the phase shift. Physically speaking, there is elastic scattering
between solitons. This is the most important character of solitons. The
discovery of this property (first to the KdV equation) greatly promotes
the progress of the soliton theory.

Remark 3 Starting from the trivial solution u = 0, we can also obtain
the single and double soliton solutions of the KdV equation by using
the original Darboux transformation mentioned at the beginning of this
section. The computation is simpler and is left for the reader.
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The Darboux transformation for the MKdV equation can be used to
get not only the single and double soliton solutions, but also the multi-
soliton solutions. Moreover, this method can be applied to many other
nonlinear equations. We shall discuss the general problem in the next
section.

1.1.5 Relation between Darboux transformations
for KdV equation and MKdV equation

The Darboux transformation for the MKdV equation can also be de-
rived from the “complexification” of the Schrödinger equation (1.1) di-
rectly. That is why the transformation given by the matrix D is also
called a Darboux transformation.

Take a solution Φ =

⎛⎝ φ1

φ2

⎞⎠ of (1.11), then the first equation of (1.11)

is
φ1,x = λφ1 + uφ2,

φ2,x = −uφ1 − λφ2.
(1.41)

Let ψ = φ1 + iφ2 and suppose λ is a real parameter, u is a real function,
then ψ satisfies

ψxx = λ2ψ − (iux + u2)ψ. (1.42)
This is a complex Schrödinger equation with potential (iux +u2). It can
be checked directly that if u is a solution of the MKdV equation, then
w = iux + u2 is a complex solution of the KdV equation wt + 6wwx +
wxxx = 0. The transformation from the solution u of the MKdV equation
to the solution w of the KdV equation is called a Miura transformation.

Remark 4 Let v = iu, then (1.10) is

vt − 6v2vx + vxxx = 0, (1.10)′

and the Miura transformation becomes w = vx−v2. If v is a real solution
of (1.10)′, then w is a real solution of the KdV equation.

Take a real number λ0 and a solution f = f1 + if2 of the equation

(1.42) for λ = λ0, then

⎛⎝ f1

f2

⎞⎠ is a solution of (1.41) for λ = λ0. Using

the conclusion to the KdV equation, we know that

ψ′ = ψx − (fx/f)ψ, w′ = w + 2(ln f)xx (1.43)

satisfy (1.42) and w′ is a solution of the KdV equation. Moreover, there
is a corresponding u′ satisfying the MKdV equation. Now we write down
the explicit expression of u′.
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Considering (1.41), the first equation of (1.43) can be rewritten in
terms of the components as

φ′
1 + iφ′

2 = λφ1 − iλφ2 − λ0
f̄

f
(φ1 + iφ2). (1.44)

If λ and λ0 are real numbers, then φ1 and φ2 can be chosen as real
functions. (1.44) becomes

⎛⎝ φ′
1

φ′
2

⎞⎠ =

⎛⎜⎜⎜⎝
λ − λ0

f2
1 − f2

2

f2
1 + f2

2

−λ0
2f1f2

f2
1 + f2

2

λ0
2f1f2

f2
1 + f2

2

−λ − λ0
f2
1 − f2

2

f2
1 + f2

2

⎞⎟⎟⎟⎠
⎛⎝ φ1

φ2

⎞⎠ . (1.45)

It should be noted that the matrix in the right hand side of (1.45) is the
counterpart of the Darboux matrix defined by (1.24).

It can be checked that

⎛⎝ φ′
1

φ′
2

⎞⎠ satisfies

φ′
1,x = λφ′

1 + u′φ′
2,

φ′
2,x = −u′φ′

1 − λφ′
2

(1.46)

where
u′ = −u − 4λ0f1f2

f2
1 + f2

2

. (1.47)

The integrability condition of (1.46) implies that u′ is a solution of the
MKdV equation.

Remark 5 The matrix given by (1.14) and that given by (1.45) are dif-

ferent by a left-multiplied factor

⎛⎝ 1 0

0 −1

⎞⎠. Notice that if (u, φ1, φ2)

is a solution of (1.41), then (−u, φ1,−φ2) is also a solution of (1.41).
Therefore, the solution (1.17) given by (1.14) is the minus of the solu-
tion given by (1.47). Both u and −u satisfy the MKdV equation. We
can take any one transformation as the Darboux transformation.

The matrix D is very important hereafter. It is called a Darboux
matrix.

1.2 AKNS system
1.2.1 2 × 2 AKNS system

In order to generalize the Lax pair of the MKdV equation, V. E. Zak-
harov, A. B. Shabat and M. J. Ablowitz, D. J. Kaup, A. C. Newell,
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H. Segur introduced independently a more general system [2, 119] which
is now called the AKNS system. For simplicity, we first discuss the 2×2
AKNS system (i.e., the AKNS system of 2 × 2 matrices), and then the
more general N × N AKNS system.

2 × 2 AKNS system is the linear system of differential equations

Φx = UΦ = λJΦ + PΦ,

Φt = V Φ =
n∑

j=0

Vjλ
n−jΦ,

(1.48)

where

J =

⎛⎝ 1 0

0 −1

⎞⎠ , P =

⎛⎝ 0 p

q 0

⎞⎠ , V =

⎛⎝ A B

C −A

⎞⎠ (1.49)

A =
n∑

j=0

aj(x, t)λn−j ,

B =
n∑

j=0

bj(x, t)λn−j ,

C =
n∑

j=0

cj(x, t)λn−j ,

(1.50)

p, q, aj , bj , cj are complex or real functions of x and t, λ is a real or
complex parameter, called the spectral parameter. As mentioned in
Remark 2, the integrability condition of (1.48)

Ut − Vx + [U, V ] = 0 (1.51)

should hold for all λ. In terms of the components, (1.51) becomes

Ax = pC − qB,

Bx = pt + 2λB − 2pA,

Cx = qt − 2λC + 2qA.

(1.52)

Both sides of the above equations are polynomials of λ. Expanding them
in terms of the powers of λ, we have

b0 = c0 = 0,

aj,x = pcj − qbj (0 ≤ j ≤ n),

bj+1 =
1
2
bj,x + paj (0 ≤ j ≤ n − 1),

cj+1 = −1
2
cj,x + qaj (0 ≤ j ≤ n − 1),

(1.53)
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and the evolution equations

pt = bn,x + 2pan,

qt = cn,x − 2qan.
(1.54)

(1.53) can be regarded as the equations to determine A, B, C, and (1.54)
is a system of evolution equations of p and q. In (1.53), aj , bj , cj can be
derived through algebraic calculation, differentiation and integration.
We can see later that they are actually polynomials of p, q and their
derivatives with respect to x (without any integral expressions of p and
q), the coefficients of which are arbitrary functions of t. After solving
aj , bj , cj from (1.53), we get the system of nonlinear evolution equations
of p and q from (1.54).

For j = 0, 1, 2, 3,

a0 = α0(t), b0 = c0 = 0,

a1 = α1(t), b1 = α0(t)p, c1 = α0(t)q,

a2 = −1
2
α0(t)pq + α2(t),

b2 =
1
2
α0(t)px + α1(t)p,

c2 = −1
2
α0(t)qx + α1(t)q,

a3 =
1
4
α0(t)(pqx − qpx) − 1

2
α1(t)pq + α3(t),

b3 =
1
4
α0(t)(pxx − 2p2q) +

1
2
α1(t)px + α2(t)p,

c3 =
1
4
α0(t)(qxx − 2pq2) − 1

2
α1(t)qx + α2(t)q.

(1.55)

Here α0(t), α1(t), α2(t), α3(t) are arbitrary functions of t, which are the
integral constants in integrating a0, a1, a2, a3 from the second equation
of (1.53).

Here are some simplest and most important examples.

Example 1.1 n = 3, p = u, q = −1, α0 = −4, α1 = α2 = α3 = 0. In
this case, a3 = −ux, b3 = −uxx − 2u2, c3 = 2u. (1.54) becomes the KdV
equation

ut + uxxx + 6uux = 0. (1.56)

Example 1.2 n = 3, p = u, q = −u, α0 = −4, α1 = α2 = α3 = 0, then
a3 = 0, b3 = −uxx − 2u3, c3 = uxx + 2u3. The equation becomes the
MKdV equation

ut + uxxx + 6u2ux = 0. (1.57)
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Example 1.3 n = 2, p = u, q = −ū, α0 = −2i, α1 = α2 = 0, a2 =
− i|u|2, b2 = − iux, c2 = − iūx. (1.54) is the nonlinear Schrödinger
equation

iut = uxx + 2|u|2u. (1.58)

We have seen that for j = 0, 1, 2, 3, aj , bj , cj are differential poly-
nomials of p and q, i.e., polynomials of p, q and their derivatives with
respect to x, whose coefficients are constants or arbitrary functions of t.

Lemma 1.4 aj, bj, cj given by (1.53) are differential polynomials of p
and q.

Proof. Use induction. The conclusion is obviously true for j = 0.
Suppose aj , bj , cj are differential polynomials of p and q for j < l, we

will prove that al, bl, cl are also differential polynomials of p and q.
(1.53) implies that bl, cl are differential polynomials of p and q. Hence

it is only necessary to prove that al is a differential polynomial of p and
q. For 1 ≤ j ≤ l − 1,

bjcl+1−j − cjbl+1−j

= bj(qal−j − 1
2
cl−j,x) − cj(pal−j +

1
2
bl−j,x)

= (qbj − pcj)al−j − 1
2
(bjcl−j,x + cjbl−j,x)

= −(ajal−j +
1
2
bjcl−j +

1
2
cjbl−j)x + ajal−j,x

+
1
2
(bj,xcl−j + cj,xbl−j)

= −(ajal−j +
1
2
bjcl−j +

1
2
cjbl−j)x + (paj +

1
2
bj,x)cl−j

−(qaj − 1
2
cj,x)bl−j

= −(ajal−j +
1
2
bjcl−j +

1
2
cjbl−j)x + bj+1cl−j − cj+1bl−j .

(1.59)

Summarize for j from 1 to l − 1, we have

b1cl − c1bl = −
l−1∑
j=1

(ajal−j +
1
2
bjcl−j +

1
2
cjbl−j)x − (b1cl − c1bl), (1.60)

i.e.,

pcl − qbl = −
l−1∑
j=1

1
4a0

(2ajal−j + bjcl−j + cjbl−j)x. (1.61)

Hence

al = −
l−1∑
j=1

1
4a0

(2ajal−j + bjcl−j + cjbl−j) + αl(t) (1.62)
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is a differential polynomial of p and q. The lemma is proved.
Since {aj , bj , cj} are differential polynomials of p and q, we can de-

fine {a0
j [p, q]}, {b0

j [p, q]}, {c0
j [p, q]} recursively so that they satisfy the

recursion relations (1.53) and the conditions a0
0[0, 0] = 1, a0

j [0, 0] = 0
(1 ≤ j ≤ n). Clearly, these {a0

j , b
0
j , c

0
j} are uniquely determined as cer-

tain polynomials of p, q and their derivatives with respect to x. From
(1.53), we have

Lemma 1.5

b0
j [0, q] = 0, c0

j [p, 0] = 0,

a0
j [p, 0] = a0

j [0, q] = 0 (1 ≤ j ≤ n)
(1.63)

for any p and q. Moreover, for any {aj , bj , cj} satisfying (1.53), there
exist αj(t) (0 ≤ j ≤ n) such that

ak[p, q] =
k∑

j=0

αk−j(t)a0
j [p, q],

bk[p, q] =
k∑

j=0

αk−j(t)b0
j [p, q],

ck[p, q] =
k∑

j=0

αk−j(t)c0
j [p, q].

(1.64)

Remark 6 For any positive integer n, the first equation of (1.48) (x-
equation) is fixed, but the second one depends on the choice of α0(t),
· · ·, αn(t). Therefore, the evolution equations (1.54) also depend on the
choice of α0(t), · · ·, αn(t). This means that (1.54) is a series of equa-
tions, which is called the AKNS hierarchy. If α0(t), · · ·, αn(t) are all
constants, then the evolution equations have the coefficients independent
of t and form a series of infinite dimensional dynamical systems. Es-
pecially, if α0 = · · · = αn−1 = 0, αn = 1, then we obtain the normalized
AKNS hierarchy, written as⎛⎝ p

q

⎞⎠
t

= Kn

⎡⎣ p

q

⎤⎦ , (1.65)

where Kn is a nonlinear differential operator defined by

Kn

⎡⎣ p

q

⎤⎦ =

⎛⎝ b0
n,x + 2pa0

n

c0
n,x − 2qa0

n

⎞⎠ . (1.66)
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From this definition and (1.53), we know that Kn is derived from Kn−1

by recursive algorithm.

1.2.2 N × N AKNS system
In the last subsection, we introduced the 2 × 2 AKNS system. In

order to obtain more nonlinear partial differential equations, the 2 × 2
Lax pair should be generalized naturally to the problems of N × N
matrices. Therefore, we discuss the Lax pair

Φx = UΦ = λJΦ + P (x, t)Φ,

Φt = V Φ =
n∑

j=0

Vj(x, t)λn−jΦ
(1.67)

where J is an N × N constant diagonal matrix, P (x, t), Vj(x, t) are
N × N matrices and P (x, t) is off-diagonal (i.e., its diagonal entries are
all zero), λ is a spectral parameter. We assume that all the entries of J
are distinct, though the assumption can be released with restrictions on
P and V .

The integrability condition of (1.67) is still

Ut − Vx + [U, V ] = 0. (1.68)

Using the expressions of U and V in (1.67), we have

Pt −
n∑

j=0

Vj,xλn−j +
n−1∑

j=−1

[J, Vj+1]λn−j +
n∑

j=0

[P, Vj ]λn−j = 0. (1.69)

The coefficients of each power of λ on the left hand side should be zero.
This leads to

[J, V0] = 0,

[J, Vj+1] − Vj,x + [P, Vj ] = 0 (0 ≤ j ≤ n − 1),

Pt − Vn,x + [P, Vn] = 0.

(1.70)

For any N × N matrix M , we divide it as M = Mdiag + Moff, where
Mdiag is the diagonal part of M and Moff = M − Mdiag (hence Moff is
off-diagonal). Since J is diagonal with distinct diagonal entries and P



1+1 dimensional integrable systems 17

is off-diagonal, (1.70) is divided into

V off
0 = 0,

V diag
j,x = [P, V off

j ]diag (0 ≤ j ≤ n),

[J, V off
j+1] = V off

j,x − [P, Vj ]off (0 ≤ j ≤ n − 1),

(1.71)

and
Pt = V off

n,x − [P, Vn]off. (1.72)

We can solve Vj (j = 0, · · · , n) from (1.71) by differentiation and
integration. In fact, similar to the 2 × 2 case, Vj can be obtained by
differentiation and integration for n = 0, 1, 2, 3. They are differential
polynomials of the entries of P . For general n, it can be proved by
induction that each entry of Vj is a differential polynomial of the entries
of P whose coefficients may depend on t. (The proof is omitted here. See
[111]). Therefore, (1.72) gives a system of partial differential equations of
the entries of P . We shall write Vj [P ] for the Vj to specify the dependence
on P .

Example 1.6 Let n = 1, J = A = diag(a1, · · · , aN ), V0 = B =
diag(b1, · · · , bN ) with ai �= aj and bi �= bj (i �= j). Take V1 = Q(x, t)
whose diagonal entries are all 0, then, from (1.71),

Qij =
bi − bj

ai − aj
Pij (i �= j), (1.73)

and the equation (1.72) becomes

Pt = Qx − [P, Q]off. (1.74)

Written in terms of the components, it becomes

Pij,t = cijPij,x +
∑

k �=i,j

(cik − ckj)PikPkj (1.75)

where
cij =

bi − bj

ai − aj
. (1.76)

This is a system of nonlinear partial differential equations of Pij (i �= j),
called the N wave equation.

Similar to the discussion in Lemma 1.5, let V 0
j [P ] be the solution of

(1.71) satisfying V0[0] = I, Vl[0] = 0 (1 ≤ l ≤ n), then the following
lemma holds.
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Lemma 1.5′. The general solution of (1.71) can be expressed as

Vk[P ] =
k∑

j=0

αjV
0
k−j [P ]. (1.77)

where α0, · · · , αn are the corresponding integral constants of {Vj [P ]},
which are diagonal matrices independent of x but may depend on t.

1.3 Darboux transformation
1.3.1 Darboux transformation for AKNS system

Let
F (u, ux, ut, uxx, · · ·) = 0, (1.78)

be a system of partial differential equations where u is a function or a
vector valued function. Consider the AKNS system

Φx = UΦ = (λJ + P )Φ,

Φt = V Φ =
n∑

j=0

Vjλ
n−jΦ,

(1.79)

where J , P , Vj satisfy the condition in the last section and P is a differ-
ential polynomial of u. Suppose (1.78) is equivalent to (1.68), the inte-
grability condition of (1.79), then (1.79) is called the Lax pair of (1.78).
In this case, (1.78) is the evolution equation (1.72). The non-degenerate
N × N matrix solution of (1.79) is called a fundamental solution of the
Lax pair.

In this section, we suppose that the (off-diagonal) entries of P are
independent and (1.78) is the system of differential equations (1.72) in
which all off-diagonal entries of P are unknown functions. This system
is called unreduced.

We first discuss the Darboux transformation for the unreduced AKNS
system.

Definition 1.7 Suppose D(x, t, λ) is an N ×N matrix. If for given P
and any solution Φ of (1.79), Φ′ = DΦ satisfies a linear system

Φ′
x = U ′Φ′ = (λJ + P ′)Φ′,

Φ′
t = V ′Φ′ =

n∑
j=0

V ′
j λn−jΦ′,

(1.80)

where P ′ is an off-diagonal N×N matrix function, then the transforma-
tion (P, Φ) → (P ′, Φ′) is called a Darboux transformation for the unre-
duced AKNS system, D(x, t, λ) is called a Darboux matrix. A Darboux
matrix is of degree k if it is a polynomial of λ of degree k.
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According to this definition, P ′ satisfies the equation

P ′off
t − V ′off

n,x + [P ′, V ′
n]off = 0, (1.72)′

where the entries of V ′
n are differential polynomials of P ′. Later, we will

see that V ′
n = Vn[P ′] when the Darboux matrix is a polynomial of λ. In

this case (1.72)′ and (1.72) are the same partial differential equations.
Substituting Φ′ = DΦ into (1.80), we get

U ′ = DUD−1 + DxD−1,

V ′ = DV D−1 + DtD
−1.

(1.81)

Proposition 1 If D is a Darboux matrix for (1.79) and D′ is a Darboux
matrix for (1.80), then D′D is a Darboux matrix for (1.79).

Proof. Since D′ is a Darboux matrix for (1.80), there exists U ′′ =
λJ + P ′′ (P ′′ is off-diagonal) and V ′′ =

∑n
j=0 V ′′

j λn−j such that Φ′′ =
D′Φ′ = D′DΦ satisfies

Φ′′
x = U ′′Φ′′, Φ′′

t = V ′′Φ′′. (1.82)

Hence, by definition, D′D is a Darboux matrix for (1.79).

Remark 7 Any constant diagonal matrix K independent of λ is a Dar-
boux matrix of degree 0, since under its action according to (1.81),

λJ + P → λJ + KPK−1,
n∑

j=0

Vjλ
n−j →

n∑
j=0

KVjK
−1λn−j .

(1.83)

If we do not consider the relations among the entries of P , this kind of
Darboux matrices are trivial.

Now we first consider the Darboux matrix of degree one, which is
linear in λ. Suppose it has the form λI − S where S an N × N ma-
trix function, I is the identity matrix. According to Proposition 1 and
Remark 7, the discussion on the Darboux matrix K(λI − S) (K is a
non-degenerate constant matrix which must be diagonal in order to get
the first equation of (1.80)) can be reduced to the discussion on the Dar-
boux matrix λI − S. Therefore, to construct the Darboux matrix, it is
only necessary to construct S.
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The differential equations of S are derived as follows. From the first
equation of (1.80),

(λJ +P ′)(λI−S)Φ = ((λI−S)Φ)x = (λI−S)(λJ +P )Φ−SxΦ. (1.84)

It must hold for any solution of (1.79). Comparing the coefficients of
the powers of λ, we have

P ′ = P + [J, S], (1.85)

This is the expression of P ′.
The term independent of λ in (1.84) gives

Sx = P ′S − SP = PS − SP + JS2 − SJS, (1.86)

i.e.,
Sx + [S, JS + P ] = 0. (1.87)

This is the first equation which S satisfies.
The second equation of (1.80) leads to

n∑
j=0

V ′
j λn−j(λI − S)Φ = ((λI − S)Φ)t

= (λI − S)
n∑

j=0

Vjλ
n−jΦ − StΦ. (1.88)

Comparing the coefficients of λn+1, λn, · · ·, λ, we can determine {V ′
j }

recursively by

V ′
0 = V0, V ′

j+1 = Vj+1 + V ′
j S − SVj , (1.89)

and get the second equation of S

St = V ′
nS − SVn. (1.90)

From (1.89) Vj ’s can be expressed as

V ′
0 = V0,

V ′
j = Vj +

j∑
k=1

[Vj−k, S]Sk−1 (1 ≤ j ≤ n),
(1.91)

and (1.90) becomes

St + [S,
n∑

j=0

VjS
n−j ] = 0. (1.92)
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Theorem 1.8 λI − S is a Darboux matrix for (1.79) if and only if S
satisfies

Sx + [S, JS + P ] = 0,

St + [S,
n∑

j=0

VjS
n−j ] = 0.

(1.93)

Moreover, under the action of the Darboux matrix λI−S, P ′ = P+[J, S].

Proof. Suppose λI − S is a Darboux matrix, then (1.93) is just (1.87)
and (1.92) derived above. Conversely, if (1.87) and (1.92) hold, then for
any solution Φ of (1.79), there are the relations (1.84) and (1.88). Hence
(1.80) holds for the P ′ determined by (1.85) and the {V ′

j } determined
by (1.89), which means that λI − S is a Darboux matrix.

This theorem implies that we need to solve S from the system of
nonlinear partial differential equations (1.93) to get the Darboux matrix.
Fortunately, most of the solutions of (1.93) can be constructed explicitly.
The following theorem gives the explicit construction of the Darboux
matrix of degree one.

Suppose P is a solution of (1.72). Take complex numbers λ1, · · ·, λN

such that they are not all the same. Let Λ = diag(λ1, · · · , λN ). Let hi

be a column solution of (1.79) for λ = λi. H = (h1, · · · , hN ). When
det H �= 0, let

S = HΛH−1, (1.94)

then we have the following theorem.

Theorem 1.9 The matrix λI−S defined by (1.94) is a Darboux matrix
for (1.79).

Proof. hi is a solution of (1.79) for λ = λi, that is, it satisfies

hi,x = λiJhi + Phi,

hi,t =
n∑

j=0

Vjλ
n−jhi.

(1.95)

By taking the derivatives of H = (h1, h2, · · · , hN ) with respect to x and
t, (1.95) is equivalent to

Hx = JHΛ + PH,

Ht =
n∑

j=0

VjHΛn−j .
(1.96)
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Hence

Sx = HxΛH−1 − HΛH−1HxH−1 = [HxH−1, S]

= [JS + P, S]

St = HtΛH−1 − HΛH−1HtH
−1 = [HtH

−1, S]

= [
n∑

j=0

VjS
n−j , S].

(1.97)

Therefore, the matrix S defined by (1.94) is a solution of (1.93). Theo-
rem 1.8 implies that λI−S is a Darboux matrix for (1.79). The theorem
is proved.

Theorem 1.10 For any given (x0, t0) and the matrix S0, (1.93) has a
solution satisfying S(x0, t0) = S0. That is, the system is integrable.

Proof. First suppose the Jordan form of S0 is a diagonal matrix. Sup-
pose its eigenvalues are λ1, · · ·, λN and the corresponding eigenvectors
are h0i. Let hi be a solution of (1.95) satisfying hi(x0, t0) = h0i. Then
these hi are linearly independent in a neighborhood of (x0, t0). Theo-
rem 1.9 implies that the Darboux matrix exists, i.e., (1.93) has a solution.
If the Jordan form of S0 is not diagonal, then there is a series of matrices
{S(k)

0 } such that the Jordan form of S
(k)
0 is diagonal and S

(k)
0 → S0 as

k → ∞. Construct S according to (1.94) with initial value S
(k)
0 , then

S(k) solves (1.93). The smooth dependency of the solution of (1.93) to
the initial value implies that S(k) → S and S

(k)
x , S

(k)
t converge in a neigh-

borhood of (x0, t0). Therefore S is a solution of (1.93) with initial value
S0. Thus (1.93) is solvable for any given initial value, which means that
it is integrable. The theorem is proved.

We can also prove this theorem by direct but tedious calculation.
This theorem implies that a Darboux matrix of degree one can be

obtained either by (1.94) or the limit of such Darboux matrices.

Remark 8 hi can be expressed as hi = Φ(λi)li (i = 1, 2, · · · , N), where l1,
l2, · · ·, lN are N linearly independent constant column matrices. Hence
H in (1.94) can be written as

H = (Φ(λ1)l1, Φ(λ2)l2, · · · , Φ(λN )lN ) . (1.98)

This construction of Darboux matrix was given by [33, 94]. Theo-
rem 1.9 and 1.10 implies that (1.94) contains all the matrices S which
are similar to diagonal matrices and λI − S are Darboux matrices of
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degree one. A Darboux matrix expressed by (1.94) is called a diagonal-
izable Darboux matrix or Darboux matrix with explicit expressions. It
is useful in constructing the solutions because it is expressed explicitly.
Hereafter, we mostly use the diagonalizable Darboux matrices and the
word “diagonalizable” is omitted.

The “single soliton solution” can be obtained by the Darboux trans-
formation from the seed solution P = 0.

For P = 0, the fundamental solution of (1.67) is Φ = eλJx+Ω(λ,t) where
Ω(t) =

∫ ∑n
j=0 Vj [0](t)λn−j dt is a diagonal matrix. For any constants

λ1, · · ·, λN and column matrices l1, · · ·, lN , let

H =
(
eλ1Jx+Ω(λ1,t)l1, · · · , eλNJx+Ω(λN ,t)lN

)
, (1.99)

then
P ′ = [J, HΛH−1] (1.100)

is a solution of (1.72) and the fundamental solution of the Lax pair (1.80)
is Φ′ = (λI − HΛH−1)Φ.

Remark 9 If Vj [0] depends on t, then Ω(λi, t) is not a linear function
of t, hence the velocities of the solitons are not constants [45].

The double soliton solution can be obtained from P ′ by applying
further Darboux transformation. Since Φ′ is known in this process, P ′′
and Φ′′ can be obtained by a purely algebraic algorithm. The multi-
soliton solutions are obtained similarly.

For general AKNS system, det H �= 0 may not hold for all (x, t).
Therefore, the solutions given by Darboux transformations may not be
regular for all (x, t).

1.3.2 Invariance of equations under Darboux
transformations

We have known that (P ′, V ′
j ) and (P, Vj) satisfy the same recursion

relations (1.71) and (1.72) holds true for the two sets of functions. V ′
j is

a differential polynomial of P ′ which is expressed by a similar equality
as (1.77), i.e.,

V ′
k[P ′] =

k∑
j=0

α′
j(t)V

0
k−j [P

′]. (1.101)

Here we prove that actually the coefficients α′
0(t), · · · , α′

n(t) are the same
as α0(t), · · · , αn(t) respectively. Therefore P ′ and P satisfy the same
evolution equation (1.72).
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Theorem 1.11 Suppose Vj’s are differential polynomials of P satisfying
(1.71). S is a matrix satisfying (1.87), Vi’s are defined by (1.89) and
P ′ = P + [J, S]. Then Vi’s are differential polynomials of P ′ and

V ′
j [P ′] = Vj [P ′] (j = 1, 2, · · · , n). (1.102)

Proof. At first we see that the equation P ′ = P + [J, S] is equivalent
to P = P ′ − [J, S] and the equation (1.87) is equivalent to

Sx = [P ′ + SJ, S]. (1.103)

Moreover, for arbitrary x-function P ′. This equation admits solutions in
a neighborhood around any given point x = x0. Thus we may consider
P ′ as an arbitrary off-diagonal matrix-valued function of x.

From (1.89) we have

[J, V ′
j+1] − V ′

j,x + [P ′, V ′
j ]

= [J, Vj+1] − Vj,x + [P, Vj ] + ([J, V ′
j ] − V ′

j−1,x + [P ′, V ′
j−1])S

−S([J, Vj ] − Vj−1,x + [P, Vj−1]) (j = 0, · · · , n − 1).

(1.104)

Using induction, we know that

[J, V ′
j+1] − V ′

j,x + [P ′, V ′
j ] = 0 (j = 0, · · · , n − 1) (1.105)

from the equations (1.71) for Vj [P ]. Moreover, we can prove

V ′diag
n,x − [P ′, V ′

n]diag = 0. (1.106)

This means that V ′
j and P ′ also satisfy (1.71). Therefore, as mentioned

above, V ′
j can be expressed as a differential polynomial of P ′: V ′

j =
V ′

j [P ′].
Let

∆j [P ′] = V ′
j [P ′] − Vj [P ′], (1.107)

(1.89) implies ∆0 = 0. Suppose ∆k = 0, then (1.71) leads to

[J,∆k+1] = ∆off
k,x − [P ′, ∆k]off = 0, (1.108)

hence ∆off
k+1 = 0. From (1.71),

∆diag
k+1,x = [P ′, ∆k+1]off = 0, (1.109)

which means that ∆diag
k+1[P

′] is independent of x. We should prove that

∆diag
k+1[P

′] is independent of P ′. Denote P ′
ij be the entries of P ′, P

′(α)
ij be
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the αth derivative of P ′
ij with respect to x. Suppose the order of the

highest derivatives of P ′ in ∆diag
k+1 is r, then

0 =
∂∆diag

k+1

∂x
=
∑
i,j

r∑
α=0

∂∆diag
k+1

∂P
′(α)
ij

P
′(α+1)
ij . (1.110)

In this equation, the coefficient of P
′(r+1)
ij should be 0. Hence ∆diag

k+1 does
not contain the rth derivative of P ′, which means that it is independent
of P ′. Especially, let S = 0, P = P ′, then (1.89) implies ∆diag

k+1 = 0.
Thus (1.102) is proved

Theorem 1.11 implies that for the evolution equations (1.72) in the
AKNS system, the Darboux transformation transforms a solution of an
equation to a new solution of the same equation.

Note that the Darboux transformation

(P, Φ) −→ (P ′, Φ′) (1.111)

defined by
P ′ = P + [J, S], Φ′ = (λI − S)Φ (1.112)

can be taken successively in a purely algebraic algorithm and leads to
an infinite series of solutions of the AKNS system:

(P, Φ) −→ (P ′, Φ′) −→ (P ′′, Φ′′) −→ · · · (1.113)

1.3.3 Darboux transformations of higher degree
and the theorem of permutability

The Darboux matrices discussed above are all of degree one. In this
subsection, we construct Darboux matrices with explicit expressions
which are the polynomials of λ of degree > 1. Then we derive the
theorem of permutability from the Darboux matrices of degree two.

Clearly, the composition of r Darboux transformations of degree one
gives a Darboux transformation of degree r. On the other hand, we can
also construct the Darboux transformations of degree r directly.

As known above, a Darboux matrix of degree one is D(x, t, λ) = λI−S
where S is given by (1.94) if it can be diagonalized (Theorem 1.9). Then,
SH = HΛ is equivalent to D(x, t, λi)hi = 0 where hi is a column solution
of the Lax pair for λ = λi such that detH = det(h1, · · · , hN ) �= 0. This
fact can be generalized to the Darboux matrix of degree r, that is, we
can consider an N × N Darboux matrix in the form

D(x, t, λ) =
r∑

j=0

Dr−j(x, t)λj , D0 = I. (1.114)
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Take Nr complex numbers λ1, λ2, · · ·, λNr and the column solution
hi of the Lax pair for λ = λi (i = 1, · · · , Nr). Let

Fr =

⎛⎜⎜⎜⎜⎜⎜⎝
h1 h2 · · · hNr

λ1h1 λ2h2 · · · λNrhNr

...
...

. . .
...

λr−1
1 h1 λr−1

2 h2 · · · λr−1
Nr hNr

⎞⎟⎟⎟⎟⎟⎟⎠ (1.115)

which is an Nr ×Nr matrix. The system D(x, t, λi)hi = 0 is equivalent
to

r−1∑
j=0

Dr−j(x, t)λj
ihi = −λr

i hi (i = 1, · · · , Nr) (1.116)

and can be written as

(Dr, Dr−1, · · · , D1)Fr = −(λr
1h1, · · · , λr

NrhNr). (1.117)

This is a system of linear algebraic equations for (Dr, Dr−1, · · · , D1).
When det Fr �= 0, it has a unique solution (Dr, Dr−1, · · · , D1). Therefore,
when det Fr �= 0, there exists a unique N×N matrix D(x, t, λ) satisfying
D(x, t, λi)hi = 0 (i = 1, · · · , Nr). We write it as D(h1, · · · , hNr, λ) to
indicate that D is constructed from h1, · · · , hNr.

The next theorem shows that it is a Darboux matrix and decompos-
able as a product of two Darboux matrices of lower degree [52, 74].

Theorem 1.12 Given Nr complex numbers λ1, · · · , λNr. Let hi be a
column solution of the Lax pair (1.79) for λ = λi (i = 1, · · · , Nr), Fr be
defined by (1.115). Suppose det Fr �= 0, then the following conclusions
hold.

(1) There exists a unique matrix D(h1, · · · , hNr, λ) in the form (1.114)
such that

D(h1, · · · , hNr, λi)hi = 0 (i = 1, 2, · · · , Nr). (1.118)

In this case, D(h1, · · · , hNr, λ) is a Darboux matrix of degree r for (1.79).
(2) If det Fr−1 �= 0, then the above Darboux matrix of degree r can be

decomposed as

D(h1, · · · , hNr, λ)

= D
(
D(h1, · · · , hN(r−1), λN(r−1)+1)hN(r−1)+1, · · · ,

D(h1, · · · , hN(r−1), λNr)hNr, λ
)
·

·D(h1, · · · , hN(r−1), λ).

(1.119)
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On the right hand side of this equality, the first term is a Darboux matrix
of degree one and the second term is a Darboux matrix of degree (r− 1).

(3) The Darboux matrix D(h1, · · · , hNr, λ) of degree r can be decom-
posed into the product of r Darboux matrices of degree one.

(4) P̃ = P − [J, D1] is a solution of (1.72).

Proof. We first prove (2). Let

Λk = diag(λN(k−1)+1, · · · , λNk), (1.120)

Hk = (hN(k−1)+1, · · · , hNk), (1.121)

then

Fr =

⎛⎜⎜⎜⎜⎜⎜⎝
H1 H2 · · · Hr

H1Λ1 H2Λ2 · · · HrΛr

...
...

. . .
...

H1Λr−1
1 H2Λr−1

2 · · · HrΛr−1
r

⎞⎟⎟⎟⎟⎟⎟⎠ . (1.122)

Since

Fr−1 =

⎛⎜⎜⎜⎜⎜⎜⎝
H1 H2 · · · Hr−1

H1Λ1 H2Λ2 · · · Hr−1Λr−1

...
...

. . .
...

H1Λr−2
1 H2Λr−2

2 · · · Hr−1Λr−2
r−1

⎞⎟⎟⎟⎟⎟⎟⎠ (1.123)

is non-degenerate, there is a matrix D(h1, · · · , hN(r−1), λ) of degree (r−1)
with respect to λ such that

D(h1, · · · , hN(r−1), λi)hi = 0 (i = 1, 2, · · · , N(r − 1)). (1.124)

Let

h′
i = D(h1, · · · , hN(r−1), λi)hi (i = N(r − 1) + 1, · · · , Nr). (1.125)

Construct a Darboux matrix D(h′
N(r−1)+1, · · · , h′

Nr, λ) from h′
i and let

D′(λ) = D(h′
N(r−1)+1, · · · , h′

Nr, λ)D(h1, · · · , hN(r−1), λ), (1.126)

then D′(λi)hi = 0 (i = 1, 2, · · · , N(r− 1)). Moreover, for i = N(r− 1) +
1, · · · , Nr,

D′(λi)hi = D(h′
N(r−1)+1, · · · , h′

Nr, λi)h′
i = 0. (1.127)

Hence D′(λ) = D(λ).
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Thus, we have decomposed the matrix of degree r determined by
(1.116) to the product of a matrix of degree (r − 1) and a matrix of
degree one, expressed by (1.119). This proves (2).

For D(h1, · · · , hN(r−1), λ), if all the determinants of Fr−2, Fr−3, · · · are
non-zero, then D(h1, · · · , hN , λ) can be decomposed to r matrices of de-
gree one by repeating the above procedure. For r = 1, D(h1, · · · , hN , λ)
is a Darboux matrix. Hence D(h1, · · · , hNr, λ) is also a Darboux ma-
trix and it can be decomposed to the product of r Darboux matrices of
degree one:

D = (λI − Sr) · · · (λI − S1). (1.128)

Since detFr �= 0, we can always permute the subscripts of Λi and Hi so
that all the determinants of Fr−2, Fr−3, · · · are non-zero. (3) is proved.

Since D is the product of r Darboux matrices of degree one, D itself
is a Darboux matrix. Hence (1) holds.

Note that
D1 = −(S1 + · · · + Sr). (1.129)

After the transformation of λI − S1, P → P ′ = P + [J, S1]. Then after
the transformation of λI−S2, P ′ → P ′′ = P ′+[J, S2], and so on. Hence,
after the transformation of D,

P → P + [J, S1 + · · · + Sr] = P − [J, D1]. (1.130)

Therefore, P − [J, D1] is a solution of (1.72). (4) is proved. This proves
the lemma.

Darboux transformation has an important property — the theorem of
permutability. This theorem originated from the Bäcklund transforma-
tion of the sine-Gordon equation and there are a lot of generalizations
and various proofs. The proof here is given by [52] (2× 2 case) and [33]
(N × N case). This proof does not depend on any boundary conditions
and the permutation of the parameters is expressed definitely.

From the solution (P, Φ(λ)), we can construct the Darboux transfor-
mation with parameters λ

(1)
1 , · · ·, λ

(1)
N and the solutions h

(1)
i = Φ(λi)l

(1)
i

of the Lax pair. Then the solution (P (1), Φ(1)(λ)) is obtained. Here l
(1)
i ’s

are N constant vectors. Next, construct a Darboux matrix for (P (1),

Φ(1)(λ)) with parameters λ
(2)
1 , · · ·, λ

(2)
N and l

(2)
i to get (P (1,2), Φ(1,2)(λ)).

On the other hand, construct the Darboux transformation for (P, Φ(λ))
with parameters λ

(2)
i and l

(2)
i to get (P (2), Φ(2)(λ)). Then construct the

Darboux transformation with parameters λ
(1)
i and l

(1)
i to get (P (2,1),

Φ(2,1)(λ)). The following theorem holds.
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Theorem 1.13 (Theorem of permutability) Suppose

det

⎛⎝ H1 H2

H1Λ1 H2Λ2

⎞⎠ �= 0, (1.131)

then
(P (1,2), Φ(1,2)(λ)) = (P (2,1), Φ(2,1)(λ)). (1.132)

Proof. Theorem 1.12 implies that Φ(1,2)(λ) and Φ(2,1)(λ) are both ob-
tained from Φ(λ) by the action of the Darboux transformation of degree
two, and are expressed by

Φ(1,2)(λ) = D(h(1)
1 , · · · , h(1)

N , h
(2)
1 , · · · , h(2)

N , λ),

φ(2,1)(λ) = D(h(2)
1 , · · · , h(2)

N , h
(1)
1 , · · · , h(1)

N , λ).
(1.133)

From (1) of Theorem 1.12, we know that the right hand side of the above
equations are equal. Hence the theorem of permutability holds.

The theorem of permutability can be expressed by the following Bian-
chi diagram:

(P, Φ)
�����

�����

Λ(1), L(1)

Λ(2), L(2)

(P (1), Φ(1))

(P (2), Φ(2))

�����

�����

(P (1,2), Φ(1,2)) = (P (2,1), Φ(2,1))

Λ(2), L(2)

Λ(1), L(1)

(1.134)

Here L(1) and L(2) denote the sets {l(1)i } and {l(2)i } respectively.

Remark 10 The Darboux transformation of higher degree is much more
complicated than the Darboux transformation of degree one. The the-
orem of decomposition implies that Darboux transformations of degree
one can generate Darboux transformations of higher degree. Therefore,
we can use Darboux transformations of degree one successively instead of
a Darboux transformation of higher degree so as to avoid the calculation
of the determinant of a matrix of very high order (of order Nr). Since
the algorithm for the Darboux transformation of degree one is purely al-
gebraic and independent of the seed solution P , it is quite convenient to
calculate the solutions using symbolic calculation with computer. How-
ever, some solutions, e.g., multi-solitons can be expressed by an explicit
formulae by using Darboux transformations of higher degree [80].



30 DARBOUX TRANSFORMATIONS IN INTEGRABLE SYSTEMS

Remark 11 The proof for Theorem 1.13 is for the Darboux transfor-
mations with explicit expressions. Since any Darboux transformation
without explicit expression is a limit of Darboux transformations with
explicit expressions, the theorem of permutability also holds for the Dar-
boux transformations without explicit expressions.

Now we compute the more explicit expression of the Darboux matrix
of degree two. Suppose it is constructed from (Λ1, H1) and (Λ2, H2)
which satisfy (1.131). Let Sj = HjΛjH

−1
j and denote

Λα = diag(λ(α)
1 , · · · , λ(α)

N ), Hα = (h(α)
1 , · · · , h(α)

N ).

After the action of λI−S1, h
(2)
j is transformed to (λ(2)

j I−S1)h
(2)
j . Hence

H2 is transformed to H̃2 = H2Λ2 − S1H2 = (S2 − S1)H2. The second
Darboux matrix of degree one is λI − S̃2 where

S̃2 = H̃2Λ2H̃
−1
2 = (S2 − S1)S2(S2 − S1)−1. (1.135)

According to (1.131), S2 − S1 is non-degenerate. The Darboux matrix
of degree two is

D(λ) = (λI − S̃2)(λI − S1)

= λ2I − λ(S2
2 − S2

1)(S2 − S1)−1 + (S2 − S1)S2(S2 − S1)−1S1.

(1.136)
It is easy to check that D(λ) is symmetric to S1 and S2. Therefore, we
can also obtain the theorem of permutability by this symmetry.

1.3.4 More results on the Darboux matrices of
degree one

In this subsection, we show that the Darboux matrix method in The-
orem 1.9 can be applied not only to the AKNS system, but also to many
other evolution equations, especially to the Lax pairs whose U and V are
polynomials of λ. On the other hand, we also show that those Darboux
matrices include all the diagonalizable Darboux matrices of the form
λI − S, and any non-diagonalizable Darboux matrix can be obtained
from the limit of diagonalizable Darboux matrices.

We generalize the Lax pair (1.79) to

Φx = UΦ,

Φt = V Φ,
(1.137)
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where U and V are polynomials of the spectral parameter λ:

U(x, t, λ) =
m∑

j=0

Uj(x, t)λm−j ,

V (x, t, λ) =
n∑

j=0

Vj(x, t)λn−j ,

(1.138)

Uj ’s and Vj ’s are N × N matrices.
Clearly, the integrability condition of (1.137) is

Ut − Vx + [U, V ] = 0. (1.139)

In this subsection, we still discuss the Darboux matrices for the Lax
pairs without reductions. That is, we suppose that all the entries of Uj ’s
and Vj ’s are independent except for the partial differential equations
(1.139). This is to say that apart from the integrability condition (1.139),
there is no other constraint. Therefore, the nonlinear partial differential
equation to be studied is just (1.139), i.e., the equations given by the
coefficients of each power of λ in (1.139) and the unknowns are the N×N
matrices Uj and Vj (j = 0, 1, · · · , n). Compared with Subsection 1.3.1,
D = λI − S is a Darboux matrix if and only if there exist

U ′(x, t, λ) =
m∑

j=0

U ′
j(x, t)λm−j ,

V ′(x, t, λ) =
n∑

j=0

V ′
j (x, t)λn−j

(1.140)

such that Φ′ = (λI − S)Φ satisfies

Φ′
x = U ′Φ′, Φ′

t = V ′Φ′ (1.141)

where Φ is a fundamental solution of (1.137).
Clearly, U ′ and V ′ have the expressions

U ′ = DUD−1 + DxD−1,

V ′ = DV D−1 + DtD
−1

(1.142)

and they satisfy
U ′

t − V ′
x + [U ′, V ′] = 0. (1.143)

The remaining problem is to obtain S so that (1.141) holds. If S is
obtained, we have the Darboux transformation

(U, V, Φ) → (U ′, V ′, Φ′). (1.144)
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Comparing to Theorem 1.8, 1.9 and 1.10, we have

Theorem 1.8′. λI −S is a Darboux matrix of degree one for (1.137)
if and only if S satisfies

Sx + [S, U(S)] = 0, St + [S, V (S)] = 0. (1.145)

Here

U(S) =
m∑

j=0

UjS
m−j , V (S) =

n∑
j=0

VjS
n−j . (1.146)

Now suppose (U, V ) satisfies the integrability condition (1.139). For
given constant diagonal matrix Λ = diag(λ1, · · · , λN ), let hi be a column
solution of (1.137) for λ = λi, H = (h1, · · · , hN ). If detH �= 0, let
S = HΛH−1, then the following theorems holds.

Theorem 1.9′. The matrix λI − S is a Darboux matrix for (1.137).

Theorem 1.10′. The system (1.145) is integrable.

The proofs are omitted since they are similar to the proofs for the
corresponding theorems above.

Note that for the AKNS system, we can solve Vi[P ]’s from a system of
differential equations by choosing “integral constants” and these Vi[P ]’s
are differential polynomials of P . The remaining equation is only the
equation (1.72) for P . In the present case, all the entries of Ui and Vi

are regarded as independent unknowns satisfying the partial differential
equations (1.139).

The inverse of Theorem 1.9′ also holds.

Theorem 1.14 (1) If λI − S is a Darboux matrix for (1.137) and S
is diagonalized at one point, then there exists a constant diagonal ma-
trix Λ = diag(λ1, · · · , λN ) and column solutions hi’s of the Lax pair
(1.137) for λ = λi (i = 1, 2, · · · , N) such that H = (h1, · · · , hN ) and
S = HΛH−1.

(2) If λI − S is a Darboux matrix for (1.137) but it can not be di-
agonalized at any points, then there exist a series of Darboux matrices
λI − Sk such that Sk’s and their derivatives with respect to x and t
converge to S and its derivatives respectively.

The proof is similar to that for Theorem 1.10.

Example 1.15 An example of a Darboux matrix which is not diagonal-
izable everywhere.
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Consider the Lax pair

Φx =

⎛⎝ λ p

q −λ

⎞⎠Φ,

Φt =

⎛⎝ −2iλ2 + ipq −2iλp − ipx

−2iλq + iqx 2iλ2 − ipq

⎞⎠Φ

(1.147)

whose integrability condition leads to the nonlinear evolution equations

ipt = pxx − 2p2q, − iqt = qxx − 2pq2. (1.148)

This system of equations has a solution

p = α sech(αx)e−iα2t, q = −α sech(αx)eiα2t, (1.149)

which is derived from the trivial solution p = q = 0 by the Darboux
matrix D = λI − HΛH−1 with

Λ =
α

2

⎛⎝ 1 0

0 −1

⎞⎠ ,

H =

⎛⎝ e−iα2t/2 0

0 eiα2t/2

⎞⎠⎛⎝ eαx/2 −e−αx/2

e−αx/2 eαx/2

⎞⎠ .

(1.150)

Now we take (1.149) as a seed solution, whose corresponding fundamen-
tal solution of the Lax pair (1.147) is

(λI − HΛH−1)

⎛⎝ eλx−2iλ2t 0

0 e−λx+2iλ2t

⎞⎠ . (1.151)

Take

Λ(ε) =

⎛⎝ ε 0

0 0

⎞⎠ , (1.152)

then we can choose

H(ε) =

⎛⎝ h
(ε)
11 h

(ε)
12

h
(ε)
21 h

(ε)
22

⎞⎠ , (1.153)
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where

h
(ε)
11 =

(2ε2

α
− ε tanh(αx)

)
eθ − α

2
sech(αx)e−iα2t−θ,

h
(ε)
12 = −ε tanh(αx) + sech(αx)e−iα2t,

h
(ε)
21 = −ε sech(αx)eiα2t+θ +

(
ε +

α

2
tanh(αx)

)
e−θ,

h
(ε)
22 = −ε sech(αx)eiα2t − tanh(αx),

θ = εx − 2iε2t.

(1.154)

When ε → 0,
H(ε)Λ(ε)(H(ε))−1 → S, (1.155)

S =
α

∆

⎛⎝ sinh(αx)e−iα2t e−2iα2t

− sinh2(αx) − sinh(αx)e−iα2t

⎞⎠ , (1.156)

p′ =
2αe−2iα2t

∆
, q′ =

2α sinh2(αx)
∆

(1.157)

where
∆ = (α + 2 − 2 sech(αx)e−iα2t) cosh2(αx). (1.158)

Note that both eigenvalues of S are zero, but S �= 0. Hence S is not
diagonalizable. However, from the construction of S, we know that λI−
S is a Darboux matrix, i.e., it satisfies (1.145).

Finally, the conclusions for the Darboux transformations of higher
degree and the theorem of permutability in Subsection 1.3.3 also hold
for the general Lax pair (1.137). Moreover, when U and V in (1.137)
are generalized to rational functions of λ, similar conclusions hold [121].

1.4 KdV hierarchy, MKdV-SG hierarchy, NLS
hierarchy and AKNS system with u(N)
reduction

In the last section, we discussed the Darboux transformations for the
AKNS system and more general systems. In those cases, we supposed
that there were no reductions. In particular, there were no restrictions
among the off-diagonal entries of P . However, in many cases, there are
constraints on P and the Darboux transformation should keep those
constraints. This problem is solved in many cases. Nevertheless, it
should be very interesting to establish a systematic method to treat
with reduced problems.
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In this section, we first discuss some equations when N = 2 and there
is certain relation between p and q. They are the important special cases
of the 2 × 2 AKNS system: (1) KdV hierarchy: p is real and q = −1;
(2) MKdV-SG hierarchy: q = −p is real; (3) Nonlinear Schrödinger
hierarchy: q = −p̄. These special cases were studied widely (e.g. [82, 88,
91, 105, 117, 118]). Here we use a unified method to deal with the whole
hierarchy, and the coefficients may depend on t [32, 45]. At the end of
this section, we discuss the general AKNS system with u(N) reduction.
This is a generalization of the nonlinear Schrödinger hierarchy and has
many applications to other problems.

1.4.1 KdV hierarchy
Consider the Lax pair [45]

Φx = UΦ, Φt = V Φ (1.159)

where

U =

⎛⎝ 0 1

ζ − u 0

⎞⎠ , V =

⎛⎝ A B

C −A

⎞⎠ , (1.160)

A, B and C are polynomials of the spectral parameter ζ.
Compared with Section 1.2, the integrability condition (1.68) leads to

− Ax + C − B(ζ − u) = 0, Bx + 2A = 0,

−ut − Cx + 2A(ζ − u) = 0.
(1.161)

The first two equations imply

A = −1
2
Bx,

C = ζB − uB − 1
2Bxx.

(1.162)

Substituting (1.162) into (1.161) we get

ut = −2(ζ − u)Bx + uxB +
1
2
Bxxx. (1.163)

Let

B =
n∑

j=0

bj(x, t)ζn−j , (1.164)

then (1.163) leads to

b0,x = 0,

bj+1,x = ubj,x + 1
2uxbj + 1

4bj,xxx (0 ≤ j ≤ n − 1),
(1.165)
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ut = 2ubn,x + uxbn +
1
2
bn,xxx. (1.166)

(1.166) is the equation of u. When n ≥ 2, it is called a KdV equation of
higher order.

Similar to Lemma 1.5, (1.165) leads to

bk =
k∑

j=0

αk−j(t)b0
j [u], (1.167)

where b0
j [u]’s satisfy the recursion relations (1.165) and b0

0[0] = 1, b0
j [0] =

0 (j ≥ 1). Clearly b0
j [u]’s are determined by (1.165) uniquely.

The first few b0
j ’s are

b0
0 = 1, b0

1 =
1
2
u,

b0
2 =

1
8
uxx +

3
8
u2, · · · .

(1.168)

The corresponding equations are
n = 0: Linear equation

ut = α0(t)ux. (1.169)

n = 1:
ut = α0(t)

(1
4
uxxx +

3
2
uux

)
+ α1(t)ux. (1.170)

If α0 = constant, α1 = 0, (1.170) is the standard KdV equation.
n = 2:

ut = α0(t)
( 1
16

uxxxxx +
5
8
uuxxx +

5
4
uxuxx +

15
8

u2ux

)
+α1(t)

(1
4
uxxx +

3
2
uux

)
+ α2(t)ux,

(1.171)

which is called the KdV equation of 5th-order.
Next we discuss the Darboux transformation for the KdV hierarchy

by using the general results for the AKNS system. It seems that the
calculation is tedious. However, we can see the application of the general
results more clearly. The method here is valid to the whole hierarchy
comparing to the special method in Section 1.1.

The U and V given by (1.160) are different from those of the AKNS
system. However, the Lax pair can be transformed to a Lax pair in the
AKNS system by a similar transformation given by a constant matrix
depending on ζ.
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Let

R =

⎛⎝ λ 1

−1 0

⎞⎠ (λ2 = ζ),

Ψ = RΦ,

Ũ = RUR−1 =

⎛⎝ λ u

−1 −λ

⎞⎠ ,

Ṽ = RV R−1 =

⎛⎝ λB − A λ2B − 2λA − C

−B A − λB

⎞⎠ ,

(1.172)

then Ψ satisfies
Ψx = ŨΨ, Ψt = Ṽ Ψ. (1.173)

This is the Lax pair for the KdV equation in the AKNS form. The
Darboux transformation can be constructed based on the discussion in
Section 1.3. Take two constants λ1, λ2 and column solutions h1, h2 of
the Lax pair when λ = λ1, λ2 respectively. Moreover, we want that the
matrices given by the Darboux transformation are still of the form of
(1.172). That is,

Ũ ′ =

⎛⎝ λ u′

−1 −λ

⎞⎠ ,

Ṽ ′ =

⎛⎝ λB[u′] − A[u′] λ2B[u′] − 2λA[u′] − C[u′]

−B[u′] A[u′] − λB[u′]

⎞⎠ .

(1.174)

This condition (especially that the (2, 1) entry of Ũ ′ is −1) holds only
when λ2, λ1, h2 and h1 are specified.

Suppose

⎛⎝ α

β

⎞⎠ is a solution of the Lax pair (1.173) for λ = λ0, then⎛⎝ α + 2λ0β

β

⎞⎠ is a solution of (1.173) for λ = −λ0. Thus we choose

Λ =

⎛⎝ λ0 0

0 −λ0

⎞⎠ , H =

⎛⎝ α α + 2λ0β

β β

⎞⎠ . (1.175)

Let

S = HΛH−1 =

⎛⎜⎝ −λ0 − 1
τ

1
τ2

+
2λ0

τ

−1
1
τ

+ λ0

⎞⎟⎠ (1.176)
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where τ = β/α, and

D̃ =

⎛⎝ 1 0

0 −1

⎞⎠ (λI − S), (1.177)

then after the action of the Darboux transformation given by the Dar-
boux matrix D̃,

Ũ ′ = D̃ŨD̃−1 + D̃xD̃−1 =

⎛⎝ λ u′

−1 −λ

⎞⎠ (1.178)

where

u′ = −u − 2
(

1
τ2

+
2λ0

τ

)
. (1.179)

According to the general discussion to the AKNS system, V ′ is given by
the second equation of (1.174). Therefore, the Darboux transformation
given by D̃ in (1.177) is a Darboux transformation from any equation in
the KdV hierarchy to the same equation.

Next we compare the results here with those in Section 1.1. If

⎛⎝ α

β

⎞⎠
is a solution of (1.173) for λ = λ0, then the corresponding solution of
(1.159) is

R−1(λ0)

⎛⎝ α

β

⎞⎠ =

⎛⎝ −β

α + λ0β

⎞⎠ . (1.180)

Let σ be the ratio of the second and the first components, i.e.,

σ =
α + λ0β

−β
= −1

τ
− λ0, (1.181)

then σ satisfies

σx = λ2
0 − u − σ2, (1.182)

and

S =

⎛⎝ σ σ2 − λ2
0

−1 −σ

⎞⎠ . (1.183)
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In order to get the Darboux matrix for the Lax pair in the form
(1.159), let

D = R−1

⎛⎝ 1 0

0 −1

⎞⎠ (λI − S)R =

⎛⎝ −σ 1

λ2 − λ2
0 + σ2 −σ

⎞⎠
=

⎛⎝ −σ 1

ζ − ζ0 + σ2 −σ

⎞⎠ (ζ0 = λ2
0).

(1.184)
Then

U ′ = DUD−1 + DxD−1

=

⎛⎝ 0 1

ζ − 2ζ0 + u + 2σ2 0

⎞⎠ .
(1.185)

Hence the action of D keeps the x part of the Lax pair invariant, and
transforms u to

u′ = 2ζ0 − u − 2σ2 (1.186)

(the same as (1.179)). Theorem 1.11 implies that V ′[u] = V [u′], i.e., the
Darboux transformation keeps the t part invariant. Therefore, we have

Theorem 1.16 Suppose u is a solution of (1.166), ζ0 is a non-zero

real constant,

⎛⎝ a

b

⎞⎠ is a solution of the Lax pair (1.159) for ζ = ζ0,

σ = b/a, then

D =

⎛⎝ −σ 1

ζ − ζ0 + σ2 −σ

⎞⎠ (1.187)

is a Darboux matrix for (1.159). It transforms a solution u of (1.166)
to a new solution

u′ = 2ζ0 − u − 2σ2 (1.188)

of the same equation.

Remark 12 In order to let Ũ ′ and Ũ have the same (2, 1)-entry −1, the

Darboux matrix (1.184) is chosen as D = R−1

⎛⎝ 1 0

0 −1

⎞⎠ (λI − S)R,

not R−1(λI − S)R. This guarantees that the transformation transforms
a solution of (1.166) to a solution of the same equation (1.166).
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Remark 13 Let Φ =

⎛⎝ φ

ψ

⎞⎠, then φ satisfies

φxx = (ζ − u)φ,

φt = Aφ + Bφx.
(1.189)

It is similar to the system in Section 1.1. However, here A and B can be
polynomials of ζ of arbitrary degrees, whose coefficients are differential
polynomials of u. The problem discussed in Section 1.1 was a special
case.

In Theorem 1.16, b = ax, hence σ = ax/a. The transformation D in
(1.184) gives

φ → φ′ = φx − σφ = φx − ax

a
φ, (1.190)

and (1.182), (1.186) give the original Darboux transformation

u′ = u + 2(ln a)xx. (1.191)

Remark 14 From (1.165), we can get b0, b1, · · · recursively, whose in-
tegral constants can be functions of t. Therefore, the coefficients of the
nonlinear equations can be functions of t, as in the examples (1.170)
and (1.171). The solutions of the equations whose coefficients depending
on t differ a lot from the solutions of the equations whose coefficients
independent of t. In the latter case, each soliton moves in a fixed veloc-
ity and the soliton with larger amplitude moves faster. However, in the
former case, each soliton can have varying velocity (e.g. oscillates), and
the soliton with larger amplitude may move slower.

1.4.2 MKdV-SG hierarchy
Consider the Lax pair [32]

Φx = UΦ =

⎛⎝ λ p

−p −λ

⎞⎠Φ,

Φt = V Φ =

⎛⎝ A B

C −A

⎞⎠Φ,

(1.192)

where A, B and C are polynomials of λ and λ−1 satisfying

A(−λ) = −A(λ), B(−λ) = −C(λ). (1.193)

Moreover, suppose

A =
n+m∑
j=0

ajλ
2n−2j+1 (1.194)
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(m ≥ 0, n ≥ 0). Unlike the AKNS system, here A, B and C are not
restricted to the polynomials of λ, but the negative powers of λ are
allowed. The term with lowest power of λ in (1.194) is an+mλ−2m+1.

The integrability condition Ut − Vx + [U, V ] = 0 leads to

Ax = p(B + C),

pt − Bx − 2pA + 2λB = 0,

pt + Cx + 2pA + 2λC = 0.

(1.195)

Hence

B + C =
Ax

p
=

n+m∑
j=0

aj,x

p
λ2n−2j+1,

B − C =
(B + C)x + 4pA

2λ

=
n+m∑
j=0

(
1
2

(
aj,x

p

)
x

+ 2paj

)
λ2n−2j ,

(1.196)

(thus B(−λ) = −C(λ) holds automatically) and

pt =
1
2
(B − C)x − λ(B + C). (1.197)

Comparing the coefficients of λ in (1.197), we can obtain the recursion
relations among aj ’s. They include two parts. The first part

a0,x = 0,

aj+1,x =
1
4
p

((
aj,x

p

)
x

+ 4ajp

)
x

(j = 0, 1, · · · , n − 1)
(1.198)

are obtained from the coefficients of positive powers of λ and the second
part ((

an+m,x

p

)
x

+ 4an+mp

)
x

= 0,((
aj,x

p

)
x

+ 4ajp

)
x

= 4
aj+1,x

p

(j = n + m − 1, · · · , n + 1)

(1.199)

are obtained from the coefficients of negative powers of λ. Moreover, the
term without λ leads to the equation

pt − 1
4

((
an,x

p

)
x

+ 4anp

)
x

+
an+1,x

p
= 0. (1.200)
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The first few aj ’s (0 ≤ j ≤ n) are

a0 = α0(t),

a1 =
1
2
α0(t)p2 + α1(t),

a2 = α0(t)
(

1
4
ppxx − 1

8
p2

x +
3
8
p4
)

+
1
2
α1(t)p2 + α2(t),

· · · .

(1.201)

If V does not contain negative powers of λ, i.e., m = 0, then from the
general conclusion to the AKNS system, all aj ’s are differential polyno-
mials of p. The equation (1.200) becomes

pt − 1
4

((
an,x

p

)
x

+ 4anp

)
x

= 0. (1.202)

This is called the MKdV hierarchy. By using the notion a0
j in Section 1.2,

these equations can be written as

pt +
n∑

j=0

αj(t)Mn−j [p] = 0, (1.203)

where

Ml[p] = −1
4

((
a0

l,x

p

)
x

+ 4a0
l p

)
x

(l = 0, 1, · · · , n). (1.204)

Especially, if n = 1 and α0 = −4, α1 = 0, then (1.202) becomes the
MKdV equation

pt + pxxx + 6p2px = 0. (1.205)

Next, we consider the negative powers of λ in V . Take p = −ux/2 and
suppose it satisfies the boundary condition: u − kπ and its derivatives
tend to 0 fast enough as x → −∞ (k is an integer).

The first equation of (1.199) gives((
an+m,x

ux

)
x

+ an+mux

)
x

= 0. (1.206)

Write an+m as a function of u, then the above equation becomes

((an+m,uu + an+m)ux)x = 0. (1.207)

The boundary condition as x → −∞ gives an+m,uu + an+m = 0. Hence

an+m = α cos(u + β) (1.208)
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where α and β are constants.
Now take a special an+m: a0

n+m = 1
4 cos u. an+j (j = 1, 2, · · · , m − 1)

can be determined as follows. Let gn+j = a0
n+j,x/p, then gn+m = 1

2 sin u,
and

a0
j−1 =

∫ x

−∞
pgj−1 dx + a−j−1 (n + 2 ≤ j ≤ n + m) (1.209)

where a−j−1 is the limit of a0
j−1 as x → −∞. From the boundary condition

lim
x→−∞(gj−1)x = 0, the recursion relations (1.199) become

1
4
(gj−1)x + p

(
a−j−1 +

∫ x

−∞
pgj−1 dx

)
=
∫ x

−∞
gj dx. (1.210)

Moreover, suppose
lim

x→−∞ gj−1 = 0, (1.211)

then

gj−1 + 4
∫ x

−∞
p(ξ)

(
a−j−1 +

∫ ξ

−∞
p(ζ)gj−1(ζ) dζ

)
dξ

= 4
∫ x

−∞

∫ ξ

−∞
gj(ζ) dζ dξ.

(1.212)

This is an integral equation of Volterra type. It has a unique solution in
the class of functions which tend to zero fast enough together with its
derivatives as x → −∞.

Take a−j−1 = 0 and write the solution of (1.212) as

gj−1 = Q(gj) = Q2(gj+1) = · · · =
1
2
Qn+m−j+1[sinu]. (1.213)

Here Q is the operator to determine gj−1 from gj defined by (1.212).
gj−1 is not a differential polynomial of gj .

If n = 0, α0 = 0, then we obtain the SG hierarchy

pt +
1
2

m−1∑
j=0

βj(t)Qm−j−1[sinu] = 0 (1.214)

where βj(t)’s are arbitrary functions of t.
Generally, we have the compound MKdV-SG hierarchy

pt +
n∑

j=0

αj(t)Mn−j [p] +
1
2

m−1∑
j=0

βj(t)Qm−j−1[sinu] = 0,

(p = −ux
2 ).

(1.215)
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Example 1.17 n = 0, m = 2, β0 = 0, β1 = 1, then, g2 = 1
2 sinu, and

the equation becomes the sine-Gordon equation

uxt = sinu. (1.216)

Example 1.18 n = 1, m = 2, α0 = −4, α1 = 0, β0 = 0, β1 = 1, then
the equation becomes the equation describing one-dimensional nonlinear
lattice of atoms [70]

uxt +
3
2
u2

xuxx + uxxxx − sin u = 0. (1.217)

Now we consider the Darboux transformation. If

⎛⎝ α

β

⎞⎠ is a solution

of (1.192) for λ = λ0, then

⎛⎝ −β

α

⎞⎠ is a solution of (1.192) for λ = −λ0.

Therefore, we can choose

Λ =

⎛⎝ λ0 0

0 −λ0

⎞⎠ , H =

⎛⎝ α −β

β α

⎞⎠ , (1.218)

where

⎛⎝ α

β

⎞⎠ is a solution of (1.192) for λ = λ0. Let σ = β/α,

S = HΛH−1 =
λ0

1 + σ2

⎛⎝ 1 − σ2 2σ

2σ σ2 − 1

⎞⎠ (1.219)

and denote tan
θ

2
= σ, then

S = λ0

⎛⎝ cos θ sin θ

sin θ − cos θ

⎞⎠ . (1.220)

From σx = −p(1 + σ2) − 2λ0σ, we have

θx = −2p − 2λ0 sin θ. (1.221)

By direct calculation,

(λI − S)U(λI − S)−1 − Sx(λI − S)−1 =

⎛⎝ λ p′

−p′ −λ

⎞⎠ (1.222)
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where

p′ = p + 2λ0 sin θ = −p − θx, (1.223)

or equivalently,

u′ = −u + 2θ (1.224)

for suitable choice of the integral constant.
It remains to prove that the Darboux matrix λI − S keeps the re-

duction of MKdV-SG hierarchy. This includes (1) the transformed A′,
B′ and C ′ still satisfy A′(−λ) = −A′(λ) and B′(−λ) = −C(λ); (2) the
coefficients αj(t)’s keeps invariant.

Since V T (−λ) = −V (λ), ST = S and (λI +S)T (λI−S) = λ2I−S2 =
(λ2−λ2

0)I, it can be verified by direct calculation that V ′T (−λ) = −V ′(λ)
holds. This proves (1).

(2) is proved as follows. For aj (j ≤ n), this has been proved for
the AKNS system; for aj (j ≥ n + 1), the conclusion follows from the
boundary condition at infinity.

Therefore, the following theorem holds.

Theorem 1.19 Suppose u is a solution of (1.200), λ0 is a non-zero real

number,

⎛⎝ a

b

⎞⎠ is a solution of the Lax pair (1.192) for λ = λ0. Let

θ = 2 tan−1(b/a),

S = λ0

⎛⎝ cos θ sin θ

sin θ − cos θ

⎞⎠ , (1.225)

then λI − S is a Darboux matrix for (1.192). It transforms a solution
p of (1.200) to the solution p′ = p + 2λ0 sin θ of the same equation.
Moreover, u′ = −u + 2θ with suitable boundary condition, where p =
−ux/2, p′ = −u′

x/2.

Remark 15 For the sine-Gordon equation, the Bäcklund transformation
is a kind of method to get explicit solutions, which was known in the
nineteenth century. In that method, to obtain a new solution from a
known solution, there is an integrable system of differential equations to
be solved (moreover, one can obtain explicit expression by using the the-
orem of permutability and the nonlinear superposition formula). Using
Darboux transformation, that explicit expression can be obtained directly.
This will be discussed in Chapter 4 together with the related geometric
problems.
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1.4.3 NLS hierarchy
The Lax pair for the nonlinear Schrödinger hierarchy (NLS hierarchy)

is

Φx = UΦ =

⎛⎝ λ p

−p̄ −λ

⎞⎠Φ,

Φt = V Φ =

⎛⎝ A B

C −A

⎞⎠Φ,

(1.226)

where A, B and C are polynomials of λ (λ, p, A, B and C are complex-
valued) satisfying

A(−λ̄) = −A(λ), B(−λ̄) = −C(λ) (1.227)

(i.e., V ∗(−λ̄) = −V (λ) where ∗ refers to the complex conjugate trans-
pose of a matrix). This is also a special case of the AKNS system. We
shall construct a Darboux matrix keeping this reduction.

The integrability condition Ut − Vx + [U, V ] = 0 is

Ax = pC + p̄B,

Bx = pt + 2λB − 2pA,

Cx = −p̄t − 2λC − 2p̄A.

(1.228)

We can use (1.55) to write down the coefficients of the powers of λ in
A, B and C. They depend on p, px, · · · and the integral constants αj(t).
Moreover, there is a nonlinear evolution equation

pt = bn,x + 2pan. (1.229)

Especially, for n = 2, α0 = −2i, α1 = α2 = 0, the equation is the
nonlinear Schrödinger equation

ipt = pxx + 2|p|2p. (1.230)

The Darboux transformation for the nonlinear Schrödinger hierarchy

is also constructed from the choice of Λ and H. Suppose

⎛⎝ α

β

⎞⎠ is a

solution of (1.226) for λ = λ0, then

⎛⎝ −β̄

ᾱ

⎞⎠ is a solution of (1.226) for
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λ = −λ̄0. Hence, we can choose

Λ =

⎛⎝ λ0 0

0 −λ̄0

⎞⎠ , H =

⎛⎝ α −β̄

β ᾱ

⎞⎠ , (1.231)

S = HΛH−1 =
1

1 + |σ|2

⎛⎝ λ0 − λ̄0|σ|2 (λ0 + λ̄0)σ̄

(λ0 + λ̄0)σ −λ̄0 + λ0|σ|2

⎞⎠ , (1.232)

where σ = β/α. Since detH �= 0, S can be defined globally. It can be
checked that H satisfies

H∗H = |α|2 + |β|2, (1.233)

hence S satisfies
S∗S = |λ0|2,
S − S∗ = λ0 − λ̄0.

(1.234)

Therefore, under the action of the Darboux matrix λI − S, U is trans-
formed to

U ′ = (λI − S)U(λI − S)−1 − Sx(λI − S)−1 =

⎛⎝ λ p′

−p̄′ −λ

⎞⎠ (1.235)

where

p′ = p + 2S12 = p +
2(λ0 + λ̄0)σ̄

1 + |σ|2 . (1.236)

From the discussion on the AKNS system (Theorem 1.11), we know
that V ′ = (λI − S)V (λI − S)−1 − St(λI − S)−1 is also a polynomial
of λ and V ′∗(−λ̄) = −V ′(λ) holds. Moreover, λI − S gives a Darboux
transformation from an equation in the nonlinear Schrödinger hierarchy
to the same equation. This leads to the following theorem.

Theorem 1.20 Suppose p is a solution of (1.229), λ0 is a non-real

complex number,

⎛⎝ a

b

⎞⎠ is a solution of the Lax pair (1.226) for λ = λ0.

Let σ = b/a,

S =
1

1 + |σ|2

⎛⎝ λ0 − λ̄0|σ|2 (λ0 + λ̄0)σ̄

(λ0 + λ̄0)σ −λ̄0 + λ0|σ|2

⎞⎠ , (1.237)
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then λI − S is a Darboux matrix for (1.226). It transforms a solution p
of (1.229) to a solution

p′ = p +
2(λ0 + λ̄0)σ̄

1 + |σ|2 (1.238)

of the same equation.

1.4.4 AKNS system with u(N) reduction
For the nonlinear Schrödinger hierarchy, (1.226) and (1.227) imply

U(−λ̄) = −U(λ)∗, V (−λ̄) = −V (λ)∗. (1.239)

Here we generalize it to the AKNS system.
For the AKNS system (1.226), if U and V satisfy (1.239), then we

say that (1.226) has u(N) reduction, because U(λ) and V (λ) are in the
Lie algebra u(N) when λ is purely imaginary. This is a very popular
reduction.

We want to construct Darboux matrix which keeps u(N) reduction.
That is, after the action of the Darboux matrix, the derived potentials
U ′(λ) and V ′(λ) must satisfy

U ′(−λ̄) = −U ′(λ)∗, V ′(−λ̄) = −V ′(λ)∗. (1.240)

With this additional condition, Λ and H in (1.94) can not be arbitrary.
They should satisfy the following two conditions:

(1) λ1, · · · , λN can only be µ or −µ̄ where µ is a complex number (µ
is not real).

(2) If λj �= λk, then
h∗

jhk = 0 (1.241)

holds at one point (x0, t0).
In fact, if (1.241) holds at one point, then it holds everywhere. This

is proved as follows.
When λj �= λk, λk = −λ̄j , hence

hk,x = U(λk)hk, hk,t = V (λk)hk,

h∗
j,x = h∗

jU(λj)∗ = −h∗
jU(−λ̄j) = −h∗

jU(λk),

h∗
j,t = h∗

jV (λj)∗ = −h∗
jV (−λ̄j) = −h∗

jV (λk).

(1.242)

This implies that
(h∗

jhk)x = 0, (h∗
jhk)t = 0. (1.243)

Therefore, h∗
jhk = 0 holds everywhere if it holds at one point.
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Theorem 1.21 If λj’s, hj’s satisfy the above conditions (1) and (2),
H = (h1, · · · , hN ), then det H �= 0 holds everywhere if it holds at one
point. Moreover, U ′ and V ′ given by (1.81) satisfy

U ′(−λ̄) = −U ′(λ)∗, V ′(−λ̄) = −V ′(λ)∗. (1.244)

Proof. Let (x0, t0) be a fixed point. Then by the property of linear
differential equation, all {hα} with λα = µ are linearly independent if
they are linearly independent at (x0, t0). Likewise, all {hα} with λα = µ̄
are also linearly independent if they are linearly independent at (x0, t0).
Moreover, (1.241) implies that all {h1, · · · , hN} are linearly independent
if they are linearly independent at (x0, t0). Therefore, det H �= 0 and
S = HΛH−1 is globally defined.

According to the definition of S,

Shj = λjhj , h∗
kS

∗ = h∗
kλ̄k. (1.245)

Hence
h∗

k(S − S∗)hj = (λj − λ̄k)h∗
khj . (1.246)

If λj = µ, λk = −µ̄, then

h∗
k(S − S∗)hj = 0. (1.247)

If λj = λk = µ (or λj = λk = −µ̄), then

h∗
k(S − S∗)hj = (µ − µ̄)h∗

khj . (1.248)

Hence
S − S∗ = (µ − µ̄)I. (1.249)

On the other hand, from (1.245), we have

h∗
kS

∗Shj = λj λ̄kh
∗
khj . (1.250)

If λj = µ, λk = −µ̄, then

h∗
kS

∗Shj = 0. (1.251)

If λj = λk = µ (or λj = λk = −µ̄), then

h∗
kS

∗Shj = |µ|2h∗
khj , (1.252)

Therefore,
S∗S = |µ|2I. (1.253)

From (1.249) and (1.253), we obtain

(λ̄I + S)∗(λI − S) = (λ − µ)(λ + µ̄)I. (1.254)



50 DARBOUX TRANSFORMATIONS IN INTEGRABLE SYSTEMS

According to the action of the Darboux transformation on Vj ,

m∑
j=0

V ′
j λm−j

= (λI − S)
m∑

j=0

Vjλ
m−j(λI − S)−1 + (λI − S)t(λI − S)−1,

(1.255)

(
m∑

j=0

V ′
j λm−j)∗

= (λI − S)∗−1
m∑

j=0

V ∗
j λ̄m−j(λI − S)∗ + (λI − S)∗−1(λI − S)∗t

= −(λ̄I + S)
m∑

j=0

Vj(−λ̄)m−j(λ̄I + S)−1 − (λ̄I + S)t(λ̄I + S)−1

= −
m∑

j=0

V ′
j (−λ̄)m−j .

(1.256)
Hence V ′(−λ̄) = −V ′(λ)∗. Likewise, U ′(−λ̄) = −U ′(λ)∗. The theorem
is proved.

As in Section 1.3, a Darboux transformation of higher degree can be
derived by the composition of Darboux transformations of degree one.
However, with the u(N) reduction, we have also the following special
and more direct construction [117, 17].

Suppose we take l times of Darboux transformations of degree one.
Each Darboux transformation is constructed from Λα, Hα (α = 1, · · · , l).
In each Λα = diag(λ(α)

1 , · · · , λ(α
k ), suppose λ

(α)
1 = · · · = λ

(α)
k = µα,

λ
(α)
k+1 = · · · = λ

(α)
N = −µ̄α. Here k is the same for all α. For each

λ
(α)
j , solve the Lax pair and get a solution h

(α)
j satisfying the orthogonal

relations (1.241).
Denote Hα = (h(α)

1 , · · · , h(α)
N ), H̊α = (h(α)

1 , · · · , h(α)
k ). Let

Γαβ =
H̊∗

α H̊β

µβ + µ̄α
, (1.257)

D(λ) =
l∏

γ=1

(λ + µ̄γ)

⎛⎝1 −
l∑

α,β=1

H̊α(Γ−1)αβ H̊∗
β

λ + λ̄β

⎞⎠ . (1.258)

Now we prove that D(λ) is a Darboux matrix.
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Let Ĥα = (h(α)
k+1, · · · , h(α)

N ). Then Hα = ( H̊α, Ĥα) and H̊∗
αĤα = 0 for

all α = 1, · · · , l. Hence

D(µα) H̊α = 0, D(−µ̄α)Ĥα = 0. (1.259)

According to Theorem 1.12, D(λ) is a Darboux matrix.
Moreover, the inverse of D(λ) can be written out explicitly as

D(λ)−1 =
l∏

γ=1

(λ + µ̄γ)−1

⎛⎝1 +
l∑

α,β=1

H̊α(Γ−1)αβ H̊∗
β

λ − λα

⎞⎠ . (1.260)

(1.258) gives a compact form of Darboux matrix of higher degree.
Although it is special, it is very useful.

1.5 Darboux transformation and scattering,
inverse scattering theory

The scattering and inverse scattering theory is an important part of
the soliton theory. It transforms the problem of solving the Cauchy
problem of a nonlinear partial differential equation to the problem of
describing the spectrum and eigenfunctions of the Lax pair. Here we
consider the 2 × 2 AKNS system as an example to show the outline of
the scattering and inverse scattering theory (see [23] for details). More-
over, we discuss the change of the scattering data under Darboux trans-
formation for su(2) reduction. For the KdV equation, the problem can
be solved similarly, but the scattering and inverse scattering theory is
simpler.

1.5.1 Outline of the scattering and inverse
scattering theory for the 2× 2 AKNS system

First, we give the definition of the scattering data for the 2×2 complex
AKNS system. In order to coincide with the usual scattering theory, let
λ = − iζ, then the first equation of the 2×2 AKNS system (1.48) becomes

Φx =

⎛⎝ − iζ p

q iζ

⎞⎠Φ. (1.261)

Suppose p, q and their derivatives with respect to x decay fast enough
at infinity. Let C be the complex plane and R be the real line. Besides
C+ and C− are the upper and lower half plane of C respectively, i.e.,
C+ = {z ∈ C | Im ζ > 0}, C− = {z ∈ C | Im ζ < 0}.
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Property 1. For each one of the following boundary conditions, the
equation (1.261) has a unique column solution

(1) ψr(x, ζ) = R(x, ζ)e−iζx, lim
x→−∞R(x, ζ) =

⎛⎝ 1

0

⎞⎠ ,

( Im ζ ≥ 0),

(1.262)

(2) ψ̃r(x, ζ) = R̃(x, ζ)eiζx, lim
x→−∞ R̃(x, ζ) =

⎛⎝ 0

1

⎞⎠ ,

( Im ζ ≤ 0),

(1.263)

(3) ψl(x, ζ) = L(x, ζ)eiζx, lim
x→+∞L(x, ζ) =

⎛⎝ 0

1

⎞⎠ ,

( Im ζ ≥ 0),

(1.264)

(4) ψ̃l(x, ζ) = L̃(x, ζ)e−iζx, lim
x→+∞ L̃(x, ζ) =

⎛⎝ 1

0

⎞⎠ ,

( Im ζ ≤ 0).

(1.265)

Moreover, ψr, ψl (resp. ψ̃r, ψ̃l) are continuous for ζ ∈ C+ ∪ R (resp.
z ∈ C− ∪ R), and holomorphic with respect to ζ in C+ (resp. C−).
These solutions are called Jost solutions.

If ζ ∈ R, then ψl and ψ̃l are linearly independent. Hence, there exist
functions r+(ζ), r−(ζ), r̃+(ζ) and r̃−(ζ) such that

ψr = r+ψl + r−ψ̃l,

ψ̃r = r̃+ψl + r̃−ψ̃l.
(1.266)

Considering the Wronskian determinant between ψr, ψl and the Wron-
skian determinant between ψ̃r, ψ̃l, we have

Property 2. For ζ ∈ R,

r−(ζ) = R1(x, ζ)L2(x, ζ) − R2(x, ζ)L1(x, ζ),

r̃+(ζ) = R̃2(x, ζ)L̃1(x, ζ) − R̃1(x, ζ)L̃2(x, ζ).
(1.267)

r−(ζ) can be holomorphically extended to C+ ∪ R, and r̃+(ζ) can be
holomorphically extended to C− ∪ R. Here R1 and R2 are two compo-
nents of the vector R, i.e., R = (R1, R2)T . L1, L2, R̃1, R̃2, L̃1, L̃2 have
the similar meanings.
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The asymptotic properties of the four Jost solutions in Property 1 as
x → ±∞ are listed in the next property.

Property 3. (1) The following limits hold uniformly for ζ:

lim
x→−∞R(x, ζ) =

⎛⎝ 1

0

⎞⎠ , ζ ∈ C+ ∪ R,

lim
x→−∞ R̃(x, ζ) =

⎛⎝ 0

1

⎞⎠ , ζ ∈ C− ∪ R,

lim
x→+∞L(x, ζ) =

⎛⎝ 0

1

⎞⎠ , ζ ∈ C+ ∪ R,

lim
x→+∞ L̃(x, ζ) =

⎛⎝ 1

0

⎞⎠ , ζ ∈ C− ∪ R.

(1.268)

(2) The following limits hold uniformly for ζ in a compact subset:

lim
x→+∞R(x, ζ) =

⎛⎝ r−(ζ)

0

⎞⎠ , ζ ∈ C+,

lim
x→+∞ R̃(x, ζ) =

⎛⎝ 0

r̃+(ζ)

⎞⎠ , ζ ∈ C−,

lim
x→−∞L(x, ζ) =

⎛⎝ 0

r−(ζ)

⎞⎠ , ζ ∈ C+,

lim
x→−∞ L̃(x, ζ) =

⎛⎝ r̃+(ζ)

0

⎞⎠ , ζ ∈ C−.

(1.269)

(3) The following limits hold uniformly for real ζ ∈ R:

lim
x→+∞

∣∣∣∣∣∣R(x, ζ) −
⎛⎝ r−(ζ)

r+(ζ)e2iζx

⎞⎠∣∣∣∣∣∣ = 0, ζ ∈ R,

lim
x→+∞

∣∣∣∣∣∣R̃(x, ζ) −
⎛⎝ r̃−(ζ)e−2iζx

r̃+(ζ)

⎞⎠∣∣∣∣∣∣ = 0, ζ ∈ R,

lim
x→−∞

∣∣∣∣∣∣L(x, ζ) −
⎛⎝ −r̃−(ζ)e−2iζx

r−(ζ)

⎞⎠∣∣∣∣∣∣ = 0, ζ ∈ R,
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lim
x→−∞

∣∣∣∣∣∣L̃(x, ζ) −
⎛⎝ r̃+(ζ)

−r+(ζ)e2iζx

⎞⎠∣∣∣∣∣∣ = 0, ζ ∈ R.

Rewrite (1.261) as
LΦ = ζΦ, (1.270)

where

L =

⎛⎝ i 0

0 − i

⎞⎠⎛⎝ d
dx

−
⎛⎝ 0 p

q 0

⎞⎠⎞⎠ , (1.271)

then (1.261) becomes a spectral problem of a linear ordinary differential
operator. We consider its spectrum in L2(R) × L2(R).

If ζ ∈ C+ and r−(ζ) = 0, then (1.267) implies that ψr and ψl are
linearly dependent. Hence ψr → 0 as x → ±∞. Similarly, if ζ ∈ C−
and r̃+(ζ) = 0, then ψ̃r and ψ̃l are linearly dependent. Hence ψ̃r → 0
as x → ±∞. Since r−(ζ) and r̃+(ζ) are holomorphic in C+ and C−
respectively, their zeros are discrete. These zeros are the eigenvalues of
L. The set of all eigenvalues of L is denoted by IPσ(L). If ζ ∈ R, then
it can be proved that (1.270) has a nontrivial bounded solution. σ(L) =
R ∪ IPσ(L) is called the spectrum of the operator L. Its compliment
C − σ(L) is called the regular set of L.

Property 4. If r−(ζ) �= 0 and r̃+(ζ) �= 0 hold for ζ ∈ R, then IPσ(L)
is a finite set.

Hereafter, we always suppose r−(ζ) �= 0 and r+(ζ) �= 0 when ζ ∈ R.
First we consider the eigenvalues.

If ζ ∈ IPσ(L), then ψr and ψl are linearly dependent. Suppose

ψr(x, ζ) = α(ζ)ψl(x, ζ) (ζ ∈ C+ ∩ IPσ(L)),

ψ̃r(x, ζ) = α̃(ζ)ψ̃l(x, ζ) (ζ ∈ C− ∩ IPσ(L)).
(1.272)

Denote IPσ(L) ∩ C+ = {ζ1, · · · ζd} and IPσ(L) ∩ C− = {ζ̃1, · · · ζ̃d̃
} to

be the set of eigenvalues in C+ and C− respectively. Moreover, suppose
ζ1, · · ·, ζ̃

d̃
are all simple zeros. Corresponding to each eigenvalue, there

is a constant

Ck = α(ζk)
/

dr−(ζk)
dζ

(k = 1, · · · , d),

C̃k = α̃(ζk)
/

dr̃+(ζk)
dζ

(k = 1, · · · , d̃).
(1.273)
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Using these data, we define the functions

Bd(y) = − i
d∑

k=1

Ckeiζky, B̃d(y) = i
d̃∑

k=1

C̃ke−iζky. (1.274)

Next, we consider the continuous spectrum ζ ∈ R. As is known, the
Fourier transformation of a Schwarz function φ is

F (φ)(k) =
1√
2π

∫ +∞

−∞
φ(s)e−iks ds. (1.275)

It can be extended to L2(R) and becomes a bounded map from L2(R)
to L2(R).

Property 5.

L(x, ·) −
⎛⎝ 0

1

⎞⎠ ∈ L2(R), L̃(x, ·) −
⎛⎝ 1

0

⎞⎠ ∈ L2(R). (1.276)

Denote

N(x, s) =
1√
2π

F

⎛⎝L(x, ·) −
⎛⎝ 0

1

⎞⎠⎞⎠ (s),

Ñ(x, s) = 1√
2π

F

⎛⎝L̃(x, ·) −
⎛⎝ 1

0

⎞⎠⎞⎠ (s), (s ≥ 0),

(1.277)

then

L(x, ζ) =

⎛⎝ 0

1

⎞⎠+
∫ +∞

0
N(x, s)eiζs ds, ∀ζ ∈ C+ ∪ R,

L̃(x, ζ) =

⎛⎝ 1

0

⎞⎠+
∫+∞
0 Ñ(x, s)e−iζs ds, ∀ζ ∈ C− ∪ R,

(1.278)

and the above integrals converge absolutely. Moreover,

p(x) = −2N1(x, 0), q(x) = −2Ñ2(x, 0), (1.279)

where the subscripts refer to the components.

For ζ ∈ R, denote

b(ζ) =
r+(ζ)
r−(ζ)

, b̃(ζ) =
r̃−(ζ)
r̃+(ζ)

. (1.280)
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It can be proved that

b, b̃ ∈ L2(R) ∩ L1(R) ∩ C0(R). (1.281)

Hence, we can define

Bc(y) =
1
2π

∫ +∞

−∞
b(ζ)eiζy dζ,

B̃c(y) =
1
2π

∫ +∞

−∞
b̃(ζ)e−iζy dζ.

(1.282)

The data

{ζk, Ck (k = 1, · · · , d), ζ̃k, C̃k (k = 1, · · · , d̃), b(ζ), b̃(ζ) (ζ ∈ R)} (1.283)

are called the scattering data corresponding to (p, q), denoted by Σ(p, q).
We can also call

{r−(ζ) (ζ ∈ C+ ∪ R), r̃+(ζ) (ζ ∈ C− ∪ R)} (1.284)

the scattering data, since the data in (1.283) can be obtained from the
data in (1.284).

Define B = Bc+Bd and B̃ = B̃c+B̃d according to (1.274) and (1.282).

Property 6. N and Ñ satisfy the follow system of linear integral
equations (Gelfand-Levitan-Marchenko equations)

N(x, s) + B̃(2x + s)

⎛⎝ 1

0

⎞⎠ +
∫ +∞

0
Ñ(x, σ)B̃(2x + s + σ) dσ = 0,

Ñ(x, s) + B(2x + s)

⎛⎝ 0

1

⎞⎠ +
∫ +∞

0
N(x, σ)B(2x + s + σ) dσ = 0.

(1.285)

If the scattering data {ζk, Ck, ζ̃k, C̃k, b(ζ), b̃(ζ)} are known, N and Ñ
are solved from the above integral equations and (1.279) gives (p, q).

The process to get scattering data from (p, q) is called the scattering
process. It needs to solve the spectral problem of ordinary differential
equations. The process to get (p, q) from the scattering data is called
the inverse scattering process. It needs to solve linear integral equations.

Now we consider the evolution of the scattering data. In the AKNS
system, p and q are functions of (x, t). Therefore, we should consider
the full AKNS system (with time t)

Φx =

⎛⎝ − iζ p

q iζ

⎞⎠Φ, Φt =

⎛⎝ A B

C −A

⎞⎠Φ, (1.286)
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where A, B and C are polynomials of ζ,

A =
n∑

j=0

aj(− iζ)n−j ,

B =
n∑

j=0

bj(− iζ)n−j ,

C =
n∑

j=0

cj(− iζ)n−j .

(1.287)

We also suppose
A|p=q=0 = iω(ζ, t). (1.288)

Lemma 1.5 implies B|p=q=0 = C|p=q=0 = 0.

Property 7. Suppose (p, q) satisfies the equations

pt = bn,x + 2pan, qt = cn,x − 2qan (1.289)

given by the integrability condition, then the evolution of the corre-
sponding scattering data is given by

r−(ζ, t) = r−(ζ, 0) ζ ∈ C+ ∪ R,

r̃+(ζ, t) = r̃+(ζ, 0) ζ ∈ C− ∪ R,

r+(ζ, t) = r+(ζ, 0) exp(−2i
∫ t

0
ω(ζ, τ) dτ) ζ ∈ R,

r̃−(ζ, t) = r̃−(ζ, 0) exp(2i
∫ t

0
ω(ζ, τ) dτ) ζ ∈ R,

(1.290)

and
ζk(t) = ζk(0),

ζ̃k(t) = ζ̃k(0),

Ck(t) = Ck(0) exp(−2i
∫ t

0
ω(ζ, τ) dτ),

C̃k(t) = C̃k(0) exp(2i
∫ t

0
ω(ζ, τ) dτ),

b(ζ, t) = b(ζ, 0) exp(−2i
∫ t

0
ω(ζ, τ) dτ),

b̃(ζ, t) = b̃(ζ, 0) exp(2i
∫ t

0
ω(ζ, τ) dτ).

(1.291)

(1.290) or (1.291) gives the evolution of the scattering data explicitly.
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In summary, the process of solving the initial value problem of non-
linear evolution equations (1.289) of (p, q) is as follows. Here the initial
condition is t = 0 : p = p0, q = q0.

For given (p0, q0), first solve the x-part of the Lax pair (1.286) for
p = p0, q = q0 and get the scattering data corresponding to p0 and q0.
Then, using the evolution of the scattering data (1.291), the scattering
data corresponding to (p(t), q(t)) are obtained. Finally, solve the integral
equations (1.285) to get (p(t), q(t)). Therefore, the inverse scattering
method changes the initial value problem of nonlinear partial differential
equations to the problem of solving systems of linear integral equations.
This gives an effective way to solve the initial value problem. Especially,
when br = b̃r = 0, Bc = B̃c = 0, (1.285) has a degenerate kernel. Hence
it can be solved algebraically and the soliton solutions can be obtained.
Please see [23] for details.

Remark 16 Denote Σ(p, q) to be the scattering data corresponding to
(p(x, t), q(x, t)), p0(x) and q0(x) to be the initial values of p and q at
t = 0, then the procedure of inverse scattering method can be shown in
the following diagram:

t = 0 : (p0, q0)

t = t : (p, q)

�scattering

�inverse scattering

Σ(p0, q0)

Σ(p, q)
�

(1.292)

For a linear equation, if “scattering” is changed to “Fourier transfor-
mation” and “inverse scattering” is changed to “inverse Fourier trans-
formation” in the above diagram, then it becomes the diagram for solving
the initial value problem by Fourier transformations which has been used
extensively for linear problems. Therefore, the scattering and inverse
scattering method can be regarded as a kind of Fourier method for non-
linear problems.

1.5.2 Change of scattering data under Darboux
transformations for su(2) AKNS system

For the AKNS system, the scattering data include

{ζk, Ck, ζ̃k, C̃k, b(ζ), b̃(ζ)}. (1.293)

The su(2) AKNS system means that U, V ∈ su(2) for ζ ∈ R, i.e., q = −p̄,
Ā = −A, C = −B̄. Therefore, it is just the nonlinear Schrödinger
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hierarchy. The Lax pair is

Φx =

⎛⎝ − iζ p

−p̄ iζ

⎞⎠Φ,

Φt =

⎛⎝ A B

C −A

⎞⎠Φ

(1.294)

where A(ζ̄) = −A(ζ), B(ζ̄) = −C(ζ). Here we consider the su(2) AKNS
system instead of general 2 × 2 AKNS system because the Darboux
transformation may exist globally in this case.

If

⎛⎝ α(ζ)

β(ζ)

⎞⎠ is a solution of (1.294), then

⎛⎝ −β̄(ζ̄)

ᾱ(ζ̄)

⎞⎠ is also its so-

lution. This leads to the following property.

Property 8. For the Lax pair (1.294), if ζ ∈ R, then there are
following relations among the Jost solutions and the scattering data:

R̃1 = −R̄2, R̃2 = R̄1,

L̃1 = L̄2, L̃2 = −L̄1,
(1.295)

r̃+(ζ) = r̄−(ζ), r̃−(ζ) = r̄+(ζ). (1.296)

By reordering the eigenvalues,

d̃ = d, ζ̃k = ζ̄k, C̃k = −C̄k, b̃(ζ) = b̄(ζ) (ζ ∈ R). (1.297)

Therefore, for the su(2) AKNS system, the scattering data can be
reduced to ζk ∈ C+, Ck (k = 1, 2, · · · , d) and b(ζ) (ζ ∈ R).

Now we consider the change of the scattering data under Darboux
transformations.

From the discussion on the nonlinear Schrödinger hierarchy, we know
that if p is defined globally on (−∞, +∞), so is the Darboux matrix.
In order to use the scattering theory, we want that p and its derivatives
tend to 0 fast enough at infinity.

Take a constant µ and a column solution of the Lax pair

ψr(ζ0) − µψl(ζ0) =

⎛⎝ R1(ζ0)e−iζ0x − µL1(ζ0)eiζ0x

R2(ζ0)e−iζ0x − µL2(ζ0)eiζ0x

⎞⎠
(ζ0 ∈ C+).

(1.298)

Let

σ =
R2(ζ0) − µL2(ζ0)e2iζ0x

R1(ζ0) − µL1(ζ0)e2iζ0x
(1.299)
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be the ratio of the second and the first components. Then the Darboux
matrix is

− iζI − S

= − iζI − 1
1 + |σ|2

⎛⎝ − iζ0 − iζ̄0|σ|2 (− iζ0 + iζ̄0)σ̄

(− iζ0 + iζ̄0)σ − iζ̄0 − iζ0|σ|2

⎞⎠ ,

(1.300)

and the solution is transformed by

p′ = p + 2i
(ζ̄0 − ζ0)σ̄
1 + |σ|2 . (1.301)

The change of the scattering data under Darboux transformation is given
by the following theorem [75].

Theorem 1.22 If the scattering data for (1.294) are r−(ζ) (ζ ∈ C+ ∪
R), r+(ζ) (ζ ∈ R) and α(ζk) (k = 1, · · · , d), then, under the action of
the Darboux matrix (1.300) (µ �= 0, ζ0 ∈ C+), the scattering data are
changed as follows:

(1) If ζ0 is not an eigenvalue, then, after the action of the Darboux
transformation, the number of eigenvalues increase one. All the original
eigenvalues are not changed, and ζ0 is a unique additional eigenvalue.
Moreover,

r′−(ζ) =
ζ − ζ0

ζ − ζ̄0
r−(ζ) (ζ ∈ C+ ∪ R),

r′+(ζ) = r+(ζ) (ζ ∈ R),

α′(ζk) = α(ζk) (k = 1, · · · , d),

α′(ζ0) = 1/µ,

(1.302)

hence

b′(ζ) =
ζ − ζ̄0

ζ − ζ0
b(ζ) (ζ ∈ R), H

C ′
k =

ζk − ζ̄0

ζk − ζ0
Ck (k = 1, · · · , d), H

C ′
0 =

ζ0 − ζ̄0

µr−(ζ0)
.

(1.303)

(2) If ζ0 is an eigenvalue: ζ0 = ζj, and µ �= α(ζj), then, after the
action of the Darboux transformation, ζ0 is no longer an eigenvalue.
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Moreover,

r′−(ζ) =
ζ − ζ̄0

ζ − ζ0
r−(ζ) (ζ ∈ C+ ∪ R),

r′+(ζ) = r+(ζ) (ζ ∈ R),

α′(ζk) = α(ζk) (k = 1, · · · , d, k �= j),

(1.304)

and
b′(ζ) =

ζ − ζ0

ζ − ζ̄0
b(ζ) (ζ ∈ R), H

C ′
k =

ζk − ζ0

ζk − ζ̄0
Ck (k = 1, · · · , d, k �= j).

(1.305)

Proof. (1) ζ0 �∈ IPσ(L).
Then, both the numerator and denominator of (1.299) are not 0.

Property 3 implies

lim
x→−∞σ = ∞, lim

x→+∞σ = 0. (1.306)

Hence

lim
x→−∞(− iζI − S) =

⎛⎝ − iζ + iζ̄0 0

0 − iζ + iζ0

⎞⎠ ,

lim
x→+∞(− iζI − S) =

⎛⎝ − iζ + iζ0 0

0 − iζ + iζ̄0

⎞⎠ .

(1.307)

Under the action of the Darboux transformation, the Jost solutions are
changed to

ψ′
r(x, t, ζ) =

1
− iζ + iζ̄0

(− iζI − S)ψr(x, t, ζ),

ψ′
l(x, t, ζ) =

1
− iζ + iζ̄0

(− iζI − S)ψl(x, t, ζ).
(1.308)

Hence
R′ =

1
− iζ + iζ̄0

(− iζI − S)R. (1.309)

If ζ ∈ C+,

lim
x→+∞R′ =

⎛⎜⎝ ζ − ζ0

ζ − ζ̄0
0

0 1

⎞⎟⎠
⎛⎝ r−(ζ)

0

⎞⎠ . (1.310)

Thus
r′−(ζ) =

ζ − ζ0

ζ − ζ̄0
r−(ζ), (1.311)
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r′−(ζ) has an additional zero ζ0 than r−(ζ). This means that ζ0 is a new
eigenvalue. For ζ ∈ R,

R′ ∼
⎛⎜⎝ ζ − ζ0

ζ − ζ̄0
0

0 1

⎞⎟⎠
⎛⎝ r−(ζ)

r+(ζ)e2iζx

⎞⎠ . (1.312)

Hence r′+(ζ) = r+(ζ), and

b′(ζ) =
ζ − ζ̄0

ζ − ζ0
b(ζ). (1.313)

If ζk is a zero of r−(ζ), then (1.308) implies α′(ζk) = α(ζk), and

C ′
k = α′(ζk)

/
dr′−(ζk)

dζ
=

ζk − ζ̄0

ζk − ζ0
Ck. (1.314)

When ζ = ζ0,

ψ′
r(x, t, ζ0) =

1
1 + |σ|2

⎛⎝ |σ|2 −σ̄

−σ 1

⎞⎠ψr(x, t, ζ0),

ψ′
l(x, t, ζ0)

1
1 + |σ|2

⎛⎝ |σ|2 −σ̄

−σ 1

⎞⎠ψl(x, t, ζ0),

(1.315)

α′(ζ0) =
σL1 exp(iζ0x) − L2 exp(iζ0x)

σR1 exp(− iζ0x) − R2 exp(− iζ0x)
=

1
µ

, (1.316)

C ′
0 = α′(ζ0)/

dr′−(ζ0)
dζ

=
ζ0 − ζ̄0

µr−(ζ0)
. (1.317)

(1) is proved.
(2) ζ0 = ζj ∈ IPσ(L), µ �= α(ζj).
Now

σ =
R2(ζj)
R1(ζj)

=
L2(ζj)
L1(ζj)

, (1.318)

hence
lim

x→−∞σ = 0, lim
x→+∞σ = ∞, (1.319)

lim
x→−∞(− iζI − S) =

⎛⎝ − iζ + iζ0 0

0 − iζ + iζ̄0

⎞⎠ ,

lim
x→+∞(− iζI − S) =

⎛⎝ − iζ + iζ̄0 0

0 − iζ + iζ0

⎞⎠ .

(1.320)
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Under the action of the Darboux transformation, the Jost solutions be-
come

ψ′
r(x, t, ζ) =

1
− iζ + iζ0

(− iζI − S)ψr(x, t, ζ),

ψ′
l(x, t, ζ) =

1
− iζ + iζ0

(− iζI − S)ψl(x, t, ζ).
(1.321)

For ζ ∈ C+,

lim
x→+∞R′ =

⎛⎜⎝ ζ − ζ̄0

ζ − ζ0
0

0 1

⎞⎟⎠
⎛⎝ r−(ζ)

0

⎞⎠ , (1.322)

and for ζ ∈ R,

R′ ∼
⎛⎜⎝ ζ − ζ̄0

ζ − ζ0
0

0 1

⎞⎟⎠
⎛⎝ r−(ζ)

r+(ζ)e2iζx

⎞⎠ . (1.323)

Hence

r′−(ζ) =
ζ − ζ̄0

ζ − ζ0
r−(ζ) (ζ ∈ C+ ∪ R),

r′+(ζ) = r+(ζ) (ζ ∈ R),

(1.324)

and
b′(ζ) =

ζ − ζ0

ζ − ζ̄0
b(ζ). (1.325)

From (1.324) we know that the Darboux transformation removes the
eigenvalue ζ0 (= ζj).

If ζ = ζk (k �= j), then ψ′
r = α(ζk)ψ′

l, hence

α′(ζk) = α(ζk),

C ′
k = α′(ζk)

/dr′−(ζk)
dζ

=
ζk − ζ0

ζk − ζ̄0
Ck.

(1.326)

The theorem is proved.
We have given the formulae for the change of the scattering data un-

der Darboux transformation in the su(2) case. A Darboux transforma-
tion increase or decrease the number of eigenvalues (number of solitons).
However, it does not affect the scattering data related to the continu-
ous spectrum. Thus we can use the Darboux transformation to change
a general inverse scattering problem to an inverse scattering problem
without eigenvalues.
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Remark 17 For the KdV equation, q = 1 (or −1) in the Lax pair (1.286).
Since q does not tend to zero at infinity, the above conclusions can not
be applied directly. However, the inverse scattering theory for the KdV
equation is actually simpler than the AKNS system (see [23]). The con-
clusions similar to Theorem 1.22 for the KdV equation holds true as well
[29].



Chapter 2

2+1 DIMENSIONAL INTEGRABLE
SYSTEMS

This chapter is devoted to the Darboux transformations of 2+1 dimen-
sional integrable systems. Starting from the KP equation, we discuss the
Darboux transformation for 2+1 dimensional AKNS system and more
general systems. Unlike the Darboux matrices in 1+1 dimensions, the
Darboux transformations here are given by differential operators (called
Darboux operators). The construction of the Darboux operators is uni-
form to all the equations in the system, as in the 1+1 dimensional case.
The binary Darboux transformation, which is a kind of Darboux trans-
formation in integral form, is introduced briefly. Explicit solutions of
the DSI equation can be obtained by the combination of Darboux trans-
formation and binary Darboux transformation. Moreover, the nonlinear
constraint method is used to separate the differentials in the 2+1 di-
mensional AKNS system so that the Darboux transformation in 1+1
dimensions can be used to get the localized soliton solutions.

2.1 KP equation and its Darboux transformation

A 2+1 dimensional integrable system has three independent variables
(x, y, t) where x and y usually refer to space variables and t refers to
time variable. A typical 2+1 dimensional integrable partial differential
equation is the Kadomtsev-Petviashvili equation (KP equation) [68]

uxt = (uxxx + 6uux)x + 3α2uyy, (2.1)

where α = ±1 or ± i. (2.1) is called the KPI equation if α = ±1, and the
KPII equation if α = ± i. The KP equation is the natural generalization
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of the KdV equation, which describes the motion of two dimensional
water wave. (2.1) can also be written as

vxt = vxxxx + 6vxvxx + 3α2vyy (2.2)

where v satisfies vx = u. The KP equation has a Lax pair

φy = α−1φxx + α−1uφ, (2.3)

φt = 4φxxx + 6uφx + 3(αvy + ux)φ. (2.4)

We first derive φyt by differentiating (2.3) with respect to t and in-
serting the expression of φt. Also, we can derive φty by differentiating
(2.4) with respect to y and inserting the expression of φy. The equality
φyt = φty is equivalent to (2.1) when φ �= 0. The proof of this fact is
direct, which is left for the reader. Therefore, (2.1) is the integrability
condition of the overdetermined system (2.3) and (2.4).

The Darboux transformation for the KP equation is similar with that
for the KdV equation. It can be constructed as follows. Let h be a
solution of the Lax pair (2.3) and (2.4). For any solution φ of (2.3) and
(2.4), define

φ′ = φx − (hx/h)φ, (2.5)

then φ′ is a solution of

φ′
y = α−1φ′

xx + α−1u′φ′,

φ′
t = 4φ′

xxx + 6u′φ′
x + 3(αv′y + u′

x)φ′
(2.6)

where
u′ = u + 2(hx/h)x, v′ = v + 2hx/h. (2.7)

Comparing (2.6) with (2.3) and (2.4), the only difference is that (u, φ)
is changed to (u′, φ′). Hence (2.7) gives a new solution u′ of the KP
equation [77].

Similar to 1+1 dimensions, if the seed solution u is simple enough, we
can solve the Lax pair (2.3) and (2.4) to get h, then (2.5) gives a more
complicated solution of the KP equation. Especially, if u = v = 0, then
(2.3) and (2.4) becomes

φy = α−1φxx

φt = 4φxxx.
(2.8)

Therefore, for any solution h of (2.8) with h �= 0, u′ = 2(hx/h)x gives a
solution of the KP equation.
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Example 2.1 For α = 1, h can be chosen as

h = eλx+λ2y+4λ3t + 1, (2.9)

where λ is a real constant, then

u′ =
λ2

2
sech2

(1
2
(λx + λ2y + 4λ3t)

)
(2.10)

is a solution of the KPI equation.

Example 2.2 For α = − i, let

h = eλx+iλ2y+4λ3t + e−λ̄x+iλ̄2y−4λ̄3t, (2.11)

where λ = a + b i is a complex constant, then we obtain a solution of the
KPII equation:

u′ = 2a2 sech2(ax − 2aby + 4(a3 − 3ab2)t). (2.12)

These two solutions are both travelling waves, i.e., they are of form
u′ = f(t + a1x + a2y) and u′ is invariant along the line t + a1x + a2y =
constant on the (x, y) plane. For fixed t, u′ is a non-zero constant along
certain lines (for KPI, they are λx+λ2y = constant, while for KPII, they
are ax− 2aby = constant), and u′ tends to zero exponentially at infinity
along other lines. Hence the region where u′ is far from zero forms a
band on the (x, y) plane. This kind of solutions are call “line-solitons”.
This does not happen in 1+1 dimensions.

Suppose we have known a solution u of the KP equation and a set
of solutions {φ} of the corresponding Lax pair. Let h be a special φ,
then u′ = u + 2(lnh)xx is a solution of the KP equation. Moreover,
φ′ = φx − (hx/h)φ gives the set of solutions of the Lax pair for u′. Now
we take a special φ′ as h′, then we can obtain another solution u′′ =
u′ + 2(lnh′)xx of the KP equation and the solution φ′′ = φ′

x − (h′
x/h′)φ′

of the corresponding Lax pair by constructing Darboux transformation
with h′. Continuing this procedure, we obtain a series of solutions of the
KP equation without solving differential equations.

Except the first step, this algorithm can be realized by algebraic com-
putation and differentiations. Therefore, it can be done by symbolic
calculation. The solutions are global for all (x, y, t) if h, h′, h′′ · · · do not
equal zero. This process can be expressed as

(u, φ) −→ (u′, φ′) −→ (u′′, φ′′) −→ · · · . (2.13)

The differential operator of order three on the right hand side of (2.4)
can be changed to differential operators of arbitrary order, then we get
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the KP hierarchy

φy = α−1φxx + α−1uφ,

φt =
n∑

j=0

vn−j∂
jφ,

(2.14)

(∂ = ∂/∂x). Computing the integrability condition of (2.14) and letting
all the coefficients of the derivatives of φ with respect to x be zero, we
have

2vj+1,x = αvj,y − vj,xx +
j−1∑
k=0

Cn−j
n−kvk∂

j−ku, (2.15)

ut = αvn,y − vn,xx +
n−1∑
k=0

vk∂
n−ku. (2.16)

In (2.15), vj+1 can be solved by integration. Unlike the 1+1 dimen-
sional systems such as the KdV hierarchy, here, in general, vj ’s can not
be expressed as differential polynomials of u. Therefore, (u, v1, · · · , vn)
are regarded as a set of unknowns of (2.15) – (2.16). The Darboux
transformation is still valid for this system. In practical problems, some
additional relations among (v1, · · · , vn, u) should be satisfied. This is
called a reduction of the original one. In that case, we should choose
proper h so that the relations among v1, · · · , vn, u keeps after the Dar-
boux transformation. Usually this is a difficult problem and some special
cases can be solved by certain techniques.

2.2 2+1 dimensional AKNS system and DS
equation

2+1 dimensional AKNS system is

Φy = JΦx + PΦ, Φt =
n∑

j=0

Vn−j∂
jΦ, (2.17)

where J is an N × N constant diagonal matrix, P (x, y, t) is an off-
diagonal N ×N matrix, Vj(x, y, t)’s are also N ×N matrices, ∂ = ∂/∂x.
For simplicity, we assume that the diagonal entries of J are distinct.
Moreover, we consider the non-degenerate Φ only.

The integrability condition of (2.17) leads to

[J, V off
j+1] = V off

j,y − JV off
j,x − [P, Vj ]off +

j−1∑
k=0

Cn−j
n−k(Vk∂

j−kP )off,(2.18)
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V diag
j,y − JV diag

j,x = [P, V off
j ]diag −

j−1∑
k=0

Cn−j
n−k(Vk∂

j−kP )diag, (2.19)

Pt = V off
n,y − JV off

n,x − [P, Vn]off +
n−1∑
k=0

(Vk∂
n−kP )off. (2.20)

Here the superscripts “diag” and “off” refer to the diagonal and off-
diagonal part of a matrix respectively.

Usually Vj ’s are not differential polynomials of P . But they can be
generated from P by differentiation and integration with respect to x.
(2.19) and (2.20) are regarded as a system of partial differential equa-
tions for P and V diag

j ’s (j = 0, 1, · · · , n) where V off
j ’s (j = 1, · · · , n) are

determined by (2.18). (2.17) is the Lax pair of this system of equations.
A typical equation in 2+1 dimensional AKNS system is the Davey-

Stewartson equation (DS equation), which is the natural generalization
of the nonlinear Schrödinger equation in 2+1 dimensions.

Take N = 2, n = 2 in (2.17) and let

J = α−1

⎛⎝ 1 0

0 −1

⎞⎠ , P =

⎛⎝ 0 u

−εū 0

⎞⎠ ,

α = ±1 or ± i, ε = ±1,

V0 = 2iαJ, V1 = 2iαP,

V2 = iα

⎛⎝ w1 ux + αuy

−εūx + αεūy w2

⎞⎠ .

(2.21)

where u, w1, w2 are complex-valued functions, ū is the complex conjugate
of u. Then, (2.17) becomes

Φy = α−1

⎛⎝ 1 0

0 −1

⎞⎠Φx +

⎛⎝ 0 u

−εū 0

⎞⎠Φ,

Φt = 2i

⎛⎝ 1 0

0 −1

⎞⎠Φxx + 2iα

⎛⎝ 0 u

−εū 0

⎞⎠Φx

+iα

⎛⎝ w1 ux + αuy

−εūx + αεūy w2

⎞⎠Φ.

(2.22)
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(2.19) and (2.20) lead to

iut = −uxx − α2uyy − αu(w1 − w2),

w1,y − α−1w1,x = ε(|u|2)x + αε(|u|2)y,

w2,y + α−1w2,x = ε(|u|2)x − αε(|u|2)y,

(2.23)

and w2 − w1 = α−2(w2 − w1). Denote

v = −ε|u|2 +
1
2α

(w1 − w2), (2.24)

then (2.23) becomes

iut = −uxx − α2uyy − 2εα2|u|2u − 2α2uv,

vxx − α2vyy + 2ε(|u|2)xx = 0.
(2.25)

(2.25) is called the DSI equation if ε = 1, α = ±1, and DSII equation if
ε = 1, α = ± i. They describe the motion of long wave and short wave
in the water of finite depth [20].

2.3 Darboux transformation
2.3.1 General Lax pair

Similar to the KP equation, we also want to construct the Darboux
transformation for the AKNS system. Here we first discuss the Dar-
boux transformation for the following more general Lax pair without
any reductions.

Consider Lax pair

Φy = U(x, y, t, ∂)Φ, Φt = V (x, y, t, ∂)Φ, (2.26)

where

U(x, y, t, ∂) =
m∑

j=0

Um−j(x, y, t)∂j ,

V (x, y, t, ∂) =
n∑

j=0

Vn−j(x, y, t)∂j
(2.27)

are differential operators with respect to x whose coefficients Uj ’s and
Vj ’s are N × N matrices. For simplicity, we write U(x, y, t, ∂) = U(∂),
V (x, y, t, ∂) = V (∂).

Φyt = Φty can be obtained by differentiating the first equation of
(2.26) with respect to t or by differentiating the second equation with
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respect to x. Let these two equal, we get

Ut(∂) − Vy(∂) + [U(∂), V (∂)] = 0. (2.28)

(2.26) is called integrable if (2.28) holds. (2.28) is the generalization of
the zero-curvature equations in 1+1 dimensions. It gives a system of
partial differential equations by equating all the coefficients of ∂ to be
zero.

Remark 18 The existence and uniqueness of the solutions of a system
of partial differential equations are very difficult problems. The local
solvability of a system of linear partial differential equations have been
studied by many authors. In the present case, even (2.28) holds, local
solution of (2.26) near t = t0, y = y0 with initial data Φ(t0, x, y0) =
Φ0(x) may not exist. However, if each set of equations in (2.26) is
locally solvable and the solutions are smooth enough with respect to the
parameters y and t, U(∂) and V (∂) satisfy (2.28), then (2.26) is locally
solvable. This follows from the following consideration. Suppose that
the initial data (x0, y0, t0, Φ0(x)) are given. First solve the first set of
equations of (2.26) at t = t0 with initial value Φ1(x, y0) = Φ0(x) and get
the solution Φ1(x, y). Using Φ1(x, y) as the initial value, solve the second
set of equations of (2.26) for fixed y and get the solution Φ(x, y, t). Using
(2.28) and the second equation of (2.26), we have

(Φy − U(∂)Φ)t = V (∂)(Φy − U(∂)Φ). (2.29)

Therefore, Φy = U(∂)Φ holds identically near (x0, y0, t0) by the unique-
ness of the solution.

No matter whether the existence and uniqueness hold, (2.28) is called
the integrability condition of (2.26). It gives a system of nonlinear partial
differential equations of U(∂) and V (∂). (2.26) is called the Lax pair of
this system of nonlinear partial differential equations. It is interesting
to see that we can apply Darboux transformation as well provided that
the set of solutions of (2.26) is not empty.

2.3.2 Darboux transformation of degree one
Similar to 1+1 dimensional case, we can define Darboux operator for

the integrable nonlinear partial differential equations (2.28) and there
Lax pair (2.26).

Definition 2.3 A differential operator D(x, y, t, ∂) with respect to x is
called a Darboux operator for (2.26) if there exist differential operators
U ′(∂) and V ′(∂) with respect to x such that for any solution Φ of (2.26),
Φ′ = D(∂)Φ satisfies

Φ′
y = U ′(∂)Φ′, Φ′

t = V ′(∂)Φ′. (2.30)
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The transformation (Φ, U(∂), V (∂)) → (Φ′, U ′(∂), V ′(∂)) given by D(∂)
is called a Darboux transformation.

Substituting Φ′ = DΦ into (2.30), we have

Dy(∂) = U ′(∂)D(∂) − D(∂)U(∂),

Dt(∂) = V ′(∂)D(∂) − D(∂)V (∂),
(2.31)

and
U ′

t(∂) − V ′
y(∂) + [U ′(∂), V ′(∂)] = 0. (2.32)

(2.31) is the necessary and sufficient condition for D(∂) being a Darboux
operator. Hence, if (U(∂), V (∂)) is a solution of (2.28), so is (U ′(∂),
V ′(∂)). This means that the Darboux transformation gives a new solu-
tion of (2.28). Our main task is to construct the solution D of (2.31).

We first discuss the most fundamental Darboux operator, the Dar-
boux operator of degree one. This is the Darboux operator in the form
D(x, y, t, ∂) = ∂−S(x, y, t). The Darboux operator of higher degree will
be discussed later. In order to get the general construction of S, we first
derive the equations that S should satisfy.

For a matrix M(x), we define a sequence of matrices M (j) by M (0) = I
and

M (j+1) = M (j)
x + M (j)M, (2.33)

then, for any solution Φ of the equation Φx = MΦ, ∂jΦ = M (j)Φ holds.
For any differential operator

U(∂) =
k∑

j=0

Uk−j∂
j , V (∂) =

k∑
j=0

Vk−j∂
j (2.34)

and an N × N matrix S, we define

U(S) =
k∑

j=0

Uk−jS
(j), V (S) =

k∑
j=0

Vk−jS
(j). (2.35)

Suppose that Φ satisfies Φx = SΦ, then U(∂)Φ = U(S)Φ, V (∂)Φ =
V (S)Φ. Notice that U(S) and V (S) are not given by replacing ∂ in U(∂)
and V (∂) with S. Actually they are obtained by replacing ∂j with S(j).

Theorem 2.4 ∂ − S is a Darboux operator for (2.26) if and only if S
satisfies

Sy + [S, U(S)] = (U(S))x,

St + [S, V (S)] = (V (S))x.
(2.36)
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Proof. Suppose ∂ − S is a Darboux operator for (2.26), then the first
equation of (2.31) is

Sy − (∂ − S)U(∂) + U ′(∂)(∂ − S) = 0. (2.37)

Let Ψ be the fundamental solution of Ψx = SΨ, then

SyΨ = (∂ − S)U(S)Ψ = (U(S))xΨ − [S, U(S)]Ψ. (2.38)

This gives the first equation of (2.36). The second equation is derived
similarly. The necessity of (2.36) is proved.

Conversely, suppose S is a solution of (2.36). Define

U ′(∂) =
m∑

j=0

U ′
m−j∂

j , (2.39)

where U ′
j ’s are determined recursively by

U ′
0 = U0,

U ′
j+1 = Uj+1 + Uj,x − SUj +

j∑
k=0

Cm−j
m−kU

′
k∂

j−kS.
(2.40)

Then
Sy − (∂ − S)U(∂) + U ′(∂)(∂ − S) (2.41)

does not contain any terms with ∂, i.e., it is a matrix-valued function
of x, y and t. On the other hand, for any fundamental solution Φ of
Ψx = SΨ, (2.36) leads to

(Sy − (∂ − S)U(∂) + U ′(∂)(∂ − S))Ψ = 0. (2.42)

Hence, as a matrix,

Sy − (∂ − S)U(∂) + U ′(∂)(∂ − S) = 0. (2.43)

This shows that ∂ − S satisfies the first equation of (2.31). The second
one can be proved similarly. Therefore, ∂ −S is a Darboux operator for
(2.26). The theorem is proved.

Theorem 2.5 ∂−S is a Darboux operator for (2.26) if and only if there
exists an N × N non-degenerate matrix solution H of (2.26) such that
S = HxH−1 [122].
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Proof. First we prove the sufficiency, i.e., to show the S satisfies (2.36).
From (2.26),

Sy = HxyH
−1 − SHyH

−1 = (U(S)H)xH−1 − SU(S)

= [U(S), S] + (U(S))x,
(2.44)

which is the first equation of (2.36). The second one is derived in the
same way.

Now suppose S satisfies (2.36). We shall show that the system of
equations

Hx = SH, Hy = U(∂)H, Ht = V (∂)H, (2.45)

has a solution. Clearly (2.45) is equivalent to

Hx = SH, Hy = U(S)H, Ht = V (S)H. (2.46)

Hence, we only need to verify the integrability conditions of (2.46).
Let Ψ be a fundamental solution of Ψx = SΨ. (2.37) implies

(Ψy − U(∂)Ψ)x = (SΨ)y − ∂U(∂)Ψ = S(Ψy − U(∂)Ψ). (2.47)

Hence
(Vy(∂) + V (∂)U(∂))Ψ

= (V (∂)Ψ)y − V (∂)(Ψy − U(∂)Ψ)

= (V (S)Ψ)y − V (S)(Ψy − U(S)Ψ)

= V (S)yΨ + V (S)U(S)Ψ.

(2.48)

Similarly,

(Ut(∂) + U(∂)V (∂))Ψ = U(S)tΨ + U(S)V (S)Ψ. (2.49)

Since det Ψ �= 0, the integrability condition (2.28) gives

U(S)t − V (S)y + [U(S), V (S)] = 0. (2.50)

Hence the integrability condition Hyt = Hty for (2.46) holds.
Theorem 2.4 gives the other two integrability conditions Hxy = Hyx

and Hxt = Htx. Hence (2.46) is integrable. For given initial value
H = H0 at (t, x, y) = (t0, x0, y0), (2.46) has a solution H. If H0 is non-
degenerate, H is also non-degenerate in a neighborhood of (t0, x0, y0).
That is, (2.46) has a non-degenerate matrix solution H such that S =
HxH−1. The theorem is proved.
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If there is no reduction, this theorem shows that any Darboux operator
in the form ∂−S can be expressed explicitly by the solutions of the Lax
pair. Darboux transformation exists as long as the Lax pair has a non-
degenerate N ×N matrix solution. Under the Darboux transformation,
Uj is transformed to U ′

j given by (2.40). V ′
j ’s have similar expressions.

Thus, we have constructed the Darboux transformation

(U, V, Φ) −→ (U ′, V ′, Φ′). (2.51)

This process can be continued by algebraic and differential operations
to get infinite number of solutions provided that the set of solutions of
the Lax pair for the seed solution is big enough.

For the AKNS system (2.17), the action of the Darboux operator ∂−S
gives

(∂ − S)(J∂ + P ) − Sx = (J∂ + P ′)(∂ − S). (2.52)

The coefficients of ∂2 on both sides are equal. Comparing the coefficient
of ∂, we have

P ′ = P + [J, S]. (2.53)

For practical problems, the entries of U and V often have some con-
straint relations. In that case, H in the theorem should also satisfy cer-
tain conditions so that (U ′, V ′) and (U, V ) satisfy the same constraints.
If so, we can obtain a transformation from a solution of a nonlinear
partial differential equation to a solution of the same equation.

Remark 19 For the KP equation, the construction for the Darboux op-
erator is completely the same as in Section 2.1. However, for the Davey-
Stewartson equation, it is more difficult because we should consider the
relations among the entries of P . We shall discuss it in Section 2.4.

Similar with the 1+1 dimensional case, we can also compose several
Darboux transformations of degree one to a Darboux transformation of
higher degree. However, they can be constructed directly with explicit
formulae.

2.3.3 Darboux transformation of higher degree
and the theorem of permutability

Now we discuss a Darboux operator of higher degree. It is a differen-
tial operator in the form

D(∂) =
r∑

j=0

Dr−j∂
j , D0 = I (2.54)
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such that
Dy(∂) = U ′(∂)D(∂) − D(∂)U(∂),

Dt(∂) = V ′(∂)D(∂) − D(∂)V (∂).
(2.55)

Here U ′(∂) and V ′(∂) are differential operators with respect to x.
For simplicity, we only discuss the Darboux operator of degree two.

When r > 2, the Darboux operator can also be written down explicitly,
but is more complicated.

Theorem 2.6 Let H1 and H2 be two N × N non-degenerate matrix
solutions of (2.26). Let F be the block matrix⎛⎝ H1 H2

∂H1 ∂H2

⎞⎠ . (2.56)

Suppose det F �= 0, then the following conclusions hold:
(1) There is a unique differential operator of degree two

D(H1, H2, ∂) = ∂2 + D1∂ + D2 (2.57)

satisfying
D(H1, H2, ∂)Hi = 0 (i = 1, 2). (2.58)

It is a Darboux operator.
(2) The theorem of permutability holds:

D(H1, H2, ∂) = D(H2, H1, ∂). (2.59)

(3) There is a decomposition

D(H1, H2, ∂) = D(D(H1, ∂)H2, ∂)D(H1, ∂). (2.60)

Proof. Since det F �= 0, the linear algebraic system

D1∂H1 + D2H1 = −∂2H1, D1∂H2 + D2H2 = −∂2H2 (2.61)

for D1, D2 has a unique solution, which determines D(∂) uniquely and
D(∂) satisfies (2.58). Since (2.61) is symmetric with respect to H1 and
H2, (2) holds.

By the definitions of D(D(H1, ∂)H2, ∂) and D(H1, ∂),

D(D(H1, ∂)H2, ∂)D(H1, ∂)H1 = 0,

D(D(H1, ∂)H2, ∂)D(H1, ∂)H2 = 0.
(2.62)
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Hence (2.60) holds. From (2.60) it is seen that D(H1, H2, ∂) is a Dar-
boux operator because it is the composition of two Darboux operators
of degree one.

Similar to (1.134), the theorem of permutability can be expressed by
the following diagram:

(U, V, Φ)

�����

�����

H1

H2

(U (1), V (1), Φ(1))

(U (2), V (2), Φ(2))

�����

�����

(U (1,2), V (1,2), Φ(1,2))

(U (2,1), V (2,1), Φ(2,1))

H2

H1

(2.63)

Example 2.7 For the KP equation, N = 1, we can get the expression
of u after the Darboux transformation. Denote Hi = hi. Suppose the
Darboux operator is

r∑
j=0

Dr−j∂
j , (2.64)

then Theorem 2.6 implies

r−1∑
j=0

Dr−j∂
jhi = −∂rhi, (2.65)

i.e.,
(Dr, · · · , D1)Fr = −(∂rh1, · · · , ∂rhr). (2.66)

Solving this system, we have

D1 = −det

⎛⎜⎜⎜⎝
h1 ∂h1 · · · ∂r−2h1 ∂rh1

...
...

. . .
...

...

hr ∂hr · · · ∂r−2hr ∂rhr

⎞⎟⎟⎟⎠ ·

·

⎛⎜⎜⎜⎝det

⎛⎜⎜⎜⎝
h1 ∂h1 · · · ∂r−2h1 ∂r−1h1

...
...

. . .
...

...

hr ∂hr · · · ∂r−2hr ∂r−1hr

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

−1

= −(ln detFr)x.

(2.67)
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Therefore, for the KP equation, the transformation between two solutions
is

u′ = u − 2D1,x = u + 2(ln detFr)xx. (2.68)

Many solutions can be obtained in this way [77, 80, 89].

2.4 Darboux transformation and binary Darboux
transformation for DS equation

2.4.1 Darboux transformation for DSII equation
In Section 2.2 we introduced the DSI and DSII equations (2.25) and

their Lax pairs (2.17) and (2.21). Since the reductions in DSI equa-
tion and in DSII equation are different, the method of solving these two
equations are also quite different.

First, consider the DSII equation, i.e., ε = 1, α = − i [120].

In this case, we should have w2 = w̄1. Hence v = −|u|2 +
i
2
(w1 − w̄1),

and J , P , Vj (j = 0, 1, 2) are

J = i

⎛⎝ 1 0

0 −1

⎞⎠ , P =

⎛⎝ 0 u

−ū 0

⎞⎠ ,

V0 = 2J, V1 = 2P, V2 =

⎛⎝ w1 ux − iuy

−ūx − iūy w̄1

⎞⎠ .

(2.69)

J , P and Vj have the properties

J̄ = σJσ−1, P̄ = σPσ−1, V̄j = σVjσ
−1 (j = 0, 1, 2), (2.70)

where

σ =

⎛⎝ 0 1

−1 0

⎞⎠ , (2.71)

P̄ is the matrix each of whose entry is the complex conjugate of the
corresponding entry of P . Now (2.25) becomes

iut = −uxx + uyy + 2|u|2u + 2uv,

vxx + vyy + 2(|u|2)xx = 0.
(2.72)
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Its Lax pair is

Φy = i

⎛⎝ 1 0

0 −1

⎞⎠Φx +

⎛⎝ 0 u

−ū 0

⎞⎠Φ,

Φt = 2i

⎛⎝ 1 0

0 −1

⎞⎠Φxx + 2

⎛⎝ 0 u

−ū 0

⎞⎠Φx

+

⎛⎝ w1 ux − iuy

−ūx − iūy w̄1

⎞⎠Φ,

(2.73)

with

v = −|u|2 +
i

2
(w1 − w̄1). (2.74)

The Darboux operator for (2.73) is constructed as follows.
Suppose (ξ, η)T is a solution of (2.73), then (−η̄, ξ̄)T is also its solu-

tion. Hence we can choose

H =

⎛⎝ ξ −η̄

η ξ̄

⎞⎠ , (2.75)

S = HxH−1 =
1

|ξ|2 + |η|2

⎛⎝ ξ̄ξx + ηη̄x η̄ξx − ξη̄x

ξ̄ηx − ηξ̄x ξξ̄x + η̄ηx

⎞⎠ . (2.76)

Since H̄ = σHσ−1, we have S̄ = σSσ−1. The equations

U ′(∂)(∂ − S) = (∂ − S)U(∂) − Sy,

V ′(∂)(∂ − S) = (∂ − S)V (∂) − St

(2.77)

imply

Ū ′ = σU ′σ−1,

V̄ ′ = σV ′σ−1.
(2.78)

This means that the Darboux transformation keeps the reduction rela-
tions (2.70) invariant.

After the action of the Darboux operator ∂ − S,

P ′ = P + [J, S],

V ′
2 = V2 + V1,x + 2V0Sx + [V0, S]S + [V1, S].

(2.79)
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Figure 2.1. Single line-soliton, t = 0

Hence the new solution of the DSII equation is

u′ = u + 2iS12 = u + 2i
η̄ξx − ξη̄x

|ξ|2 + |η|2 ,

v′ = v − 2( Re S11)x = v − (ln(|ξ|2 + |η|2))xx.

(2.80)

Example 2.8 Take the seed solution u = 0, then we can choose v = 0
(w1 = 0), ξ = ξ(x+ iy, t), η = η(x− iy, t) (i.e., ξ is analytic with respect
to x + iy and η is analytic with respect to x − iy) satisfying ξt = 2iξxx,
ηt = −2iηxx. For these (ξ, η), (u, v) given by (2.80) are all solutions of
DSII equation. Especially, let ξ = eαx+iαy+2iα2t, η = eβ̄x−iβ̄y−2iβ̄2t, then

u =
2i(α − β)e(α+β)x+i(α+β)y+2i(α2+β2)t

e2Reαx−2Imαy−2Im(α2)t + e2Reβx−2Imβy−2Im(β2)t
,

v = −4( Re α − Re β)2e2Re(α+β)x−2Im(α+β)y−2Im(α2+β2)t

(e2Reαx−2Imαy−2Im(α2)t + e2Reβx−2Imβy−2Im(β2)t)2
.

(2.81)

When t is fixed, the solution u is a constant along the line with slope
x : y = Im(β−α) : Re(β−α), and tends to zero in any other directions.
This kind of solution also belongs to “line-soliton”.

Multi-line-solitons can be obtained by successive Darboux transforma-
tions. They tend to zero at infinity except for finitely many directions.

Figures 2.1 – 2.4 show the single line-soliton and multi-line-solitons,
where the parameters are α1 = 3+2i, β1 = 1+ i, α2 = i, β2 = (2+ i)/4.
(For the single line-soliton, only (α1, β1) is used.)
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Figure 2.2. Double line-soliton, t = 0

Figure 2.3. Double line-soliton, t = 0.5

Figure 2.4. Double line-soliton, t = 1
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Remark 20 Comparing to the general method discussed in the last sec-
tion, the key point in the construction of Darboux transformation for the
DSII equation is the choice of H in (2.75). Although it is successful to
the DSII equation, it can not be applied to the DSI equation.

2.4.2 Darboux transformation and binary
Darboux transformation for DSI equation

When ε = 1 and α = 1, (2.25) becomes

iut + uxx + uyy + 2|u|2u + 2uv = 0,

vxx − vyy + 2(|u|2)xx = 0,
(2.82)

and its Lax pair is

Φy =

⎛⎝ 1 0

0 −1

⎞⎠Φx +

⎛⎝ 0 u

−ū 0

⎞⎠Φ,

Φt = 2i

⎛⎝ 1 0

0 −1

⎞⎠Φxx + 2i

⎛⎝ 0 u

−ū 0

⎞⎠Φx

+i

⎛⎝ w1 ux + uy

−ūx + ūy w2

⎞⎠Φ,

(2.83)

where
v = −|u|2 +

1
2
(w1 − w2), (2.84)

w1 and w2 are real functions.
Since we can not find the solution H of (2.83) like that of (2.75)

to construct the Darboux transformation for (2.82), we should use the
binary Darboux transformation. The binary Darboux transformation
was first introduced by V. B. Matveev et al and has many applications
[4, 81, 80, 72, 125, 126]. Here we show its application to DSI equation
for constructing new solutions. For the general case, please refer to [80].

For simplicity, rewrite (2.83) as

Φy = JΦx + PΦ,

Φt = 2iJΦxx + 2iPΦx + iV2Φ.
(2.85)

Apart from this Lax pair, consider its adjoint equations

Ψy = ΨxJ − ΨP,

Ψt = −2iΨxxJ + 2i(ΨP )x − iΨV2.
(2.86)
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With P ∗ = −P and V ∗
2 = V2 − 2Px, we know that if Φ is a solution of

(2.85), then Ψ = Φ∗ is a solution of (2.86), and vice versa. Therefore, as
soon as a solution of (2.85) or (2.86) is known, a solution of its adjoint
equations is also known.

Similar to Section 2.3, we first take Darboux transformation for the
adjoint equation (2.86):

Ψ′ = Ψx − ΨS,

P ′ = P + [J, S],

V ′
2 = V2 − 2Px + 2[P, S] − 2S[J, S] + 2(JSx + SxJ)

(2.87)

where
S = Ψ−1

0 Ψ0,x, (2.88)

Ψ0 is a non-degenerate 2 × 2 matrix solution of (2.86). Notice that P ′
does not satisfy P ′∗ = −P ′, and Ψ′∗ is not a solution of (2.85) with
P replaced by P ′. In order to preserve the reduction, the binary Dar-
boux transformation is a useful tool. To get a new solution of the DSI
equation, it needs the following steps:

Step 1: For a solution Φ of (2.85) and a solution Ψ of the adjoint
equations (2.86), define 1-form

ω(Ψ, Φ) = ΨΦ dx + ΨJΦ dy + 2i(ΨPΦ + ΨJΦx − ΨxJΦ) dt. (2.89)

It can be verified that ω(Ψ, Φ) is a closed 1-form, that is, its exterior
differential dω(Ψ, Φ) = 0. Hence, in a simply connected region, the
integral of ω along any closed curve is zero. In R2,1, define

Ω(Ψ, Φ)(x, y, t) =
∫ (x,y,t)

(x0,y0,t0)
ω(Ψ, Φ), (2.90)

which is independent of the path of integration, and ω(Ψ, Φ) = dΩ(Ψ, Φ).
Step 2: Let Φ′ = Ψ−1

0 Ω(Ψ0, Φ), then we can verify that Φ′ is a solution
of (2.85) with (P, V2) replaced by (P ′, V ′

2).
Step 3: Let Φ′

0 = Ψ−1
0 Ω(Ψ0, Ψ∗

0). Acting the Darboux operator ∂ −
Φ′

0Φ
′−1
0 on Φ′, we get the Darboux transformation

Φ′′ = Φ′
x − Φ′

0,xΦ′−1
0 Φ′ = Φ − Ψ∗

0Ω(Ψ0, Ψ∗
0)

−1Ω(Ψ0, Φ),

P ′′ = P ′ + [J,Ψ′
0,xΨ′−1

0 ] = P + [J,Ψ∗
0Ω(Ψ0, Ψ∗

0)
−1Ψ0].

(2.91)

P ∗ = −P leads to P ′′∗ = −P ′′. Therefore, we get a new solution of the
DSI equation.
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The process in Step 1 and Step 2 is called a binary Darboux trans-
formation. For the DSI equation, a new solution is obtained by the
composition of a Darboux transformation and a binary Darboux trans-
formation. It needs differentiation and integration in this procedure.

2.5 Application to 1+1 dimensional
Gelfand-Dickey system

In this section, we use Theorem 2.5 to discuss the Darboux transfor-
mation for the (1+1 dimensional) Gelfand-Dickey system

λΦ = U(x, t, ∂)Φ,

Φt = V (x, t, ∂)Φ
(2.92)

where

U(∂) =
m∑

j=0

Um−j(x, t)∂j ,

V (∂) =
n∑

j=0

Vn−j(x, t)∂j .

(2.93)

From the first equation of (2.92), we can compute Φt and it should be
the same as that given by the second equation of of (2.92). This gives
the integrability condition

Ut(∂) + [U(∂), V (∂)] = 0 (2.94)

of (2.92).
Let D(x, t, ∂) be a differential operator. If for any solution Φ of (2.92),

Φ′ = D(∂)Φ satisfies
λΦ′ = U ′(x, t, ∂)Φ′,

Φ′
t = V ′(x, t, ∂)Φ′,

(2.95)

where U ′ and V ′ are differential operators of the form

U ′(∂) =
m∑

j=0

U ′
m−j(x, t)∂j ,

V ′(∂) =
n∑

j=0

V ′
n−j(x, t)∂j ,

(2.96)

then D(x, t, ∂) is called a Darboux operator for (2.92).
For a differential operator D(x, t, ∂) = ∂−S(x, t), we have the follow-

ing theorem.



2+1 dimensional integrable systems 85

Theorem 2.9 ∂ − S(x, t) is a Darboux operator for (2.92) if and only
if S = HxH−1, where H is an N ×N non-degenerate matrix solution of

HΛ = U(∂)H,

Ht = V (∂)H,
(2.97)

and Λ is a constant upper-triangular matrix.

Proof. Introduce a new variable y and consider the system

Ψy = U(x, t, ∂)Ψ,

Ψt = V (x, t, ∂)Ψ.
(2.98)

If ∂ − S(x, t) is a Darboux operator for (2.92), then there exist U ′(∂)
and V ′(∂) such that

0 = (∂ − S)U(∂) − U ′(∂)(∂ − S),

St = (∂ − S)V (∂) − V ′(∂)(∂ − S).
(2.99)

Since S is independent of y and (2.37) holds, ∂−S is a Darboux operator
for (2.98) which is independent of y. According to Theorem 2.5, there
exists an N × N non-degenerate matrix solution H0 of (2.98) such that
S = H0,xH−1

0 . Here H0 may depend on y.
Let L0 = H−1

0 H0,y, (2.36) leads to

L0 = H−1
0 U(S)H0,

L0,x = −H−1
0 H0,xH−1

0 U(S)H0 + H−1
0 (U(S))xH0

+H−1
0 U(S)H0,x

= H−1
0 {(U(S))x − [S, U(S)]}H0 = 0,

and (2.50) leads to

L0,y = −H−1
0 H0,yH

−1
0 U(S)H0 + H−1

0 U(S)H0,y = 0,

L0,t = −H−1
0 H0,tH

−1
0 U(S)H0 + H−1

0 (U(S))tH0

+H−1
0 U(S)H0,t

= H−1
0 {(U(S))t + [U(S), V (S)]}H0 = 0.

Hence L0 is a constant matrix. Therefore, there exists a constant upper-
triangular matrix Λ and a constant matrix T such that L0 = TΛT−1.
According to the definition of L0,

H0,y = H0TΛT−1.
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Hence
H0(x, y, t) = H(x, t) exp(Λy)T−1

where H satisfies (2.97) and S = HxH−1.
Conversely, if H is a solution (2.97) and S = HxH−1, then S satisfies

(2.99), i.e., ∂ − S is a Darboux operator for (2.92). The theorem is
proved.

Remark 21 (1) When N = 1, H satisfies the Lax pair (2.92).
(2) If L0 in the above theorem is diagonalizable, then each column in

H satisfies the Lax pair (2.92) for specific λ.

Example 2.10 The original Darboux transformation for the KdV equa-
tion can also be deduced from the above theorem.

The KdV equation

ut + 6uux + uxxx = 0 (2.100)

has the Lax pair
λφ = −φxx − uφ,

φt = 2(2λ − u)φx + uxφ.
(2.101)

From Theorem 2.9, the Darboux transformation is

φ′ = φx − fx

f
φ (2.102)

where f is a solution of the Lax pair for λ = λ0. The new solution given
by this Darboux transformation is

u′ = u + 2(ln f)xx. (2.103)

Example 2.11 The Boussinesq equation

(uxxx + 6uux)x + 3εutt = 0 (ε = ±1)

has the Lax pair

λφ = φxxx +
3u

2
φx + wφ,

φt = σφxx + σuφ
(2.104)

(σ2 = ε, wx = 3(σuxx + ut)/4σ). Theorem 2.9 also gives the Darboux
transformation [73]

φ′ = φx − fx

f
φ (2.105)
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where f is a solution of the Lax pair for λ = λ0. The new solution of
the Boussinesq equation is

u′ = u + 2(ln f)xx,

w′ = w +
3
2
ux + 3((ln f)xxx + (ln f)x(ln f)xx).

(2.106)

2.6 Nonlinear constraints and Darboux
transformation in 2+1 dimensions

Now we come back to the 2+1 dimensional AKNS system. In this
section we will use the nonlinear constraint method and the Darboux
transformation method to solve this system.

The basic idea of the nonlinear constraint method is:
(1) Find a suitable nonlinear relation between U and Ψ and express

U as a nonlinear matrix function of Ψ: U = f(Ψ).
(2) Substitute U = f(Ψ) into the Lax pair so that the original Lax

pair becomes a system of nonlinear partial differential equations of Ψ.
In each equation, the derivative with respect to only one of x, y, t is
concerned.

(3) The constraint U = f(Ψ) is suitable so that the new system of
nonlinear equations has a Lax set (generalized Lax pair).

Then by solving the new system of nonlinear equations and its Lax
set, we can get solutions of the original problem.

This idea was first applied in 1+1 dimensional integrable systems
[11] and was generalized to the (2+1 dimensional) KP equation [14, 71].
Here we pay our attention to the 2+1 dimensional AKNS system so that
we can get localized soliton solutions. With this method, we can also
get a lot of non-localized solutions [123, 124]. However, since localized
solutions are more interesting, here we only consider localized solutions
[127, 128].

In order to use the nonlinear constraint method, here we add some
conditions on the 2+1 dimensional AKNS system. As in Section 2.2, the
2+1 dimensional AKNS system is

Ψy = JΨx + U(x, y, t)Ψ,

Ψt =
n∑

j=0

Vj(x, y, t)∂n−jΨ
(2.107)

where ∂ = ∂/∂x, J = diag(J1, · · · , JN ) is a constant diagonal N × N
matrix with distinct entries. U(x, y, t) is off-diagonal. Moreover, here
we want that all Jj ’s are real and U∗ = −U . In this case, we call (2.107)
a hyperbolic u(N) AKNS system. The condition U∗ = −U will imply
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that the solutions are globally defined, and the condition Jj ’s are real
will guarantee that there exist localized solutions.

As in Section 2.2, the integrability conditions of (2.107) are given by
(2.20).

Now we introduce a new linear system

Φx =

⎛⎝ iλI iF

iF ∗ 0

⎞⎠Φ, Φy =

⎛⎝ iλJ + U iJF

iF ∗J 0

⎞⎠Φ,

Φt =

⎛⎝ W X

Y Z

⎞⎠Φ =
n∑

j=0

⎛⎝ Wj Xj

−X∗
j Zj

⎞⎠λn−jΦ

(2.108)

where F , Wj , Xj , Zj are N × K, N × N , N × K, K × K matrices
respectively (K ≥ 1) and satisfy W ∗

j = −Wj , Z∗
j = −Zj .

The integrability conditions of (2.108) consists of

Fy = JFx + UF,

iFt = Xn,x + iWnF − iFZn,
(2.109)

iXj+1 = Xj,x + iWjF − iFZj (j = 0, 1, · · · , n − 1)

Wj,x = − iFX∗
j − iXjF

∗ (j = 0, 1, · · · , n)

Zj,x = iF ∗Xj + iX∗
j F (j = 0, 1, · · · , n)

i[J, Wj+1] = Wj,y − [U, Wj ] + iJFX∗
j + iXjF

∗J

(j = 0, 1, · · · , n − 1)

Zj,y = iF ∗JXj + iX∗
j JF (j = 0, 1, · · · , n),

(2.110)

Ux = [J, FF ∗], (2.111)

Ut = Wn,y − [U, Wn] + iJFX∗
n + iXnF ∗J. (2.112)

For U = 0, F = 0, (2.110) implies that Wj(λ) = iΩj(t), Xj = 0,
Zj = iZ0

j (t) where Ωj(t)’s are real diagonal matrices and Z0
j (t)’s are

real matrices.
When Z0

j (t) = ζj(t)IK (IK is the K ×K identity matrix) where ζj(t)
is a real function of t, (2.109) is just the Lax pair (2.107) for n = 1, 2, 3.
(2.110) and (2.112) give the recursion relations to determine Wj , Xj , Zj ,
together with the evolution equations corresponding to (2.18)–(2.20),
which are the integrability conditions of (2.107). (2.111) gives a nonlin-
ear constraint between U and F .
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This system includes the DSI equation and the 2+1 dimensional N-
wave equation as special cases.

In order to consider the asymptotic behavior of the solution U , here
we suppose Ωj is independent of t and ζj = 0. Moreover, denote Ω =∑n

j=0 Ωjλ
n−j and write Ω = diag(ω1, · · · , ωN ).

Remark 22 (2.108) is a special case of the high-dimensional generalized
AKNS system (3.1). Here we only consider this special system to find
localized solutions. The general theory will be discussed in the next chap-
ter.

The soliton solutions are obtained by Darboux transformations from
U = 0, F = 0. In the present case, the Darboux transformation can
be constructed as in Subsection 1.4.4 with u(n) reduction. However, in
order to get localized solutions, there should be more restrictions on the
parameters of Darboux transformations.

Let λα (α = 1, 2, · · · , r) be r non-real complex numbers such that
λα �= λβ for α �= β and λα �= λ̄β for all α, β. Let

Λα = diag(λα, · · · , λα︸ ︷︷ ︸
N

, λ̄α, · · · , λ̄α︸ ︷︷ ︸
K

). (2.113)

Considering the orthogonal relation (1.241), we can always take

Hα =

⎛⎝ exp(Qα) − exp(−Q∗
α)C∗

α

Cα IK

⎞⎠ , (2.114)

where Cα’s are K × N constant matrices,

Qα = diag(q1, · · · , qN ), qj = iλαx + iλαJjy + iωj(λα, t). (2.115)

According to Section 1.4, the derived solutions are always global.
However, in order to get localized solutions, we choose special

Cα = (0, · · · , 0, κα
lα

, 0, · · · , 0) (2.116)

where κα is a constant K × 1 non-zero vector being the lα’s column of
Cα.
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The Darboux matrices for such {Λα, Hα} can be constructed as fol-
lows. Let

D(1)(λ) = λ − H1Λ1H
−1
1 , H

(1)
α = D(1)(λα)Hα

(α = 2, 3, · · · , r),
D(2)(λ) = λ − H

(1)
2 Λ2H

(1)−1
2 , H

(2)
α = D(2)(λα)H(1)

α

(α = 3, 4, · · · , r),
· · ·
D(r)(λ) = λ − H

(r−1)
r ΛrH

(r−1)−1
r ,

(2.117)

D(λ) = D(r)(λ)D(r−1)(λ) · · ·D(1)(λ), (2.118)

then D(λ) is a polynomial of λ of degree r. The permutability (Theo-
rem 1.12) implies that if (Λα, Hα) and (Λβ , Hβ) are interchanged, D(λ)
is invariant.

Let

mj = #{α | 1 ≤ α ≤ r, lα = j } m = (m1, · · · , mN ) (2.119)

then m1 + · · · + mN = r.
Suppose

D(λ) = λr − D1λ
r−1 + · · · + (−1)rDr. (2.120)

The solution given by this Darboux matrix is

U [m] = i[J, (D1)BN
]. (2.121)

Here (D1)BN
denotes the first N × N principal submatrix of D1.

In order to consider the localization, the asymptotic behavior as t →
∞ and the asymptotic behavior as the phase difference tends to infinity
uniformly, we write

qj = aαjs + bαj (2.122)

where aαj and bαj are independent of s. Here s can be a linear parameter
of a straight line in (x, y) plane, or time t, or any other parameters.

Moreover, denote

ρα = Re(aα,lα), φα = Im(aα,lα),

πα = Re(bα,lα), ψα = Im(bα,lα).
(2.123)

In order to prove the following theorem, we need some symbols and
simple facts.

If M1, M2 are j × k matrices, we write M1
.= M2 if there is a non-

degenerate diagonal k × k matrix A such that M2 = M1A.
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If L is a k × k diagonal matrix, M1 and M2 are k × k matrices with
M1

.= M2 and detM1 �= 0, then M1LM−1
1 = M2LM−1

2 .
Let

M =

⎛⎝ a −v∗/ā

v IK

⎞⎠ (2.124)

where v �= 0 is an K × 1 vector, a �= 0 is a number. Let

Λ =

⎛⎝ λ0

λ̄0IK

⎞⎠ . (2.125)

Then we have

M−1 =
1
∆

⎛⎝ ā v∗

−āv ∆IK − vv∗

⎞⎠ , (2.126)

MΛM−1 =
1
∆

⎛⎝ λ̄0∆ + (λ0 − λ̄0)|a|2 (λ0 − λ̄0)av∗

(λ0 − λ̄0)āv λ̄0∆IK + (λ0 − λ̄0)vv∗

⎞⎠
(2.127)

where ∆ = v∗v + |a|2. Moreover,

lim
a→∞MΛM−1 =

⎛⎝ λ0

λ̄0IK

⎞⎠ , (2.128)

lim
a→0

MΛM−1 =

⎛⎜⎝ λ̄0

λ̄0IK + (λ0 − λ̄0)
vv∗

v∗v

⎞⎟⎠ . (2.129)

Theorem 2.12 (1) If there is at most one α (1 ≤ α ≤ r) such that
ρα = 0, then lims→∞ U [m] = 0.

(2) If ραj = 0 (j = 1, 2, · · · , q) with αj �= αk for j �= k, ργ �= 0 for all
γ �= αj (j = 1, · · · , q) and lα1 = · · · = lαq , then lims→∞ U [m] = 0.

(3) If ρα = 0, ρβ = 0 (α �= β), ργ �= 0 for all γ �= α, β, and lα �= lβ,
then

lim
s→∞U

[m]
ab = 0 for (a, b) �= (lα, lβ) (2.130)

and as s → ∞,

U
[m]
lα,lβ

∼ Bαβ exp(i(ψα − ψβ) + i(φβ − φα)s)

Aαβ cosh(πα + πβ − δ
(1)
αβ ) + cosh(πα − πβ − δ

(2)
αβ )

(2.131)
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where Aαβ, δ
(1)
αβ , δ

(2)
αβ are real constants, Aαβ > 0, and Bαβ are complex

constants. Moreover, if K = 1, then Bαβ �= 0 if and only if κα �= 0 and
κβ �= 0.

Proof. First suppose ρα �= 0. By (2.128) and (2.129),

lim
ραs→±∞HαΛαH−1

α = S±∞
α (2.132)

where

S+∞
α =

⎛⎝ λαIN

λ̄αIK

⎞⎠ ,

S−∞
α =

⎛⎜⎝ λαIN + (λ̄α − λα)Elαlα

λ̄αIK + (λα − λ̄α)
κακ∗

α

κ∗
ακα

,

⎞⎟⎠ ,

(2.133)
Ejk is an N ×N matrix whose (j, k)th entry is 1 and the rest entries are
zero.

For β �= α,

(λβ − S±∞
α )Hβ

.=

⎛⎝ exp(Qβ(s)) − exp(−Qβ(s)∗)C̃±∗
β

C̃±
β IK

⎞⎠ (2.134)

where

C̃±
β = (0, · · · , 0, κ̃±

β
lβ

, 0, · · · , 0),

κ̃+
β =

λβ − λ̄α

λβ − λα
κβ ,

κ̃−
β =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λβ − λ̄α

λβ − λα
κβ − λα − λ̄α

λβ − λα

κ∗
ακβ

κ∗
ακα

κα if lβ �= lα,

κβ − λα − λ̄α

λβ − λ̄α

κ∗
ακβ

κ∗
ακα

κα if lβ = lα.

(2.135)

Therefore, if ρα �= 0, the action of the limit Darboux matrix λ − S±∞
α

on Hβ (β �= α) does not change the form of Hβ, but only changes the
constant vector κβ .

If K = 1, then κ±∗
β κ±

γ �= 0 implies κ̃±∗
β κ̃±

γ �= 0. When K > 1, this
does not hold in general.
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Now suppose ρα = 0. Without loss of generality, suppose lα = 1.
Then

Hα
.=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp(πα) − exp(−π̄α)κ∗
α

1 0
. . .

...

1 0

κα 0 · · · 0 IK

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.136)

By (2.127),

HαΛαH−1
α =

1
∆
·

·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

λ̄α∆ + (λα − λ̄α) exp(πα + π̄α) (λα − λ̄α) exp(πα)κ∗
α

λα 0

. . .
...

λα 0

(λα − λ̄α) exp(π̄α)κα 0 · · · 0 λ̄α∆IK + (λα − λ̄α)κακ∗
α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2.137)

where ∆ = exp(πα + π̄α) + κ∗
ακα.

Part (1) of the theorem is derived as follows. Owing to the permutabil-
ity of Darboux transformations, we can suppose ρ1 �= 0, · · ·, ρr−1 �= 0,
ρr = 0. Then, as s → ∞, D(α) tends to a diagonal matrix for α ≤ r− 1.
Considering (2.137), the limit of (D(r)(λ))BN

is also diagonal, hence

U [m] = i[J, (D1)BN
] → 0. (2.138)

Now we turn to prove part (2). We use the construction of Darboux
matrices in (1.258). However, the λ in (1.258) should be replaced by iλ
because of its appearance in (2.108).

Let

H̊α =

⎛⎝ exp(Qα(s))

Cα

⎞⎠ , Γαβ =
H̊∗

α H̊β

λβ − λ̄α
, (2.139)

then the Darboux matrix is

D(λ) =
r∏

α=1

(λ − λ̄α)

⎛⎝1 −
r∑

α,β=1

H̊α(Γ−1)αβ H̊∗
β

λ − λ̄β

⎞⎠ (2.140)

and the new solution is

U [m] = i

⎡⎣J,
r∑

α,β=1

(
H̊α(Γ−1)αβ H̊∗

β

)
BN

⎤⎦ . (2.141)
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First, suppose q = r and αj = j (j = 1, 2, · · · , r).
Since

H̊j
.=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1

exp(πj)

1
. . .

1

0 · · · 0 κj
lj

0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.142)

and l1 = · · · = lq, we have

Γ =

⎛⎜⎜⎜⎝
Γ11 · · · Γ1q

...
. . .

...

Γq1 · · · Γqq

⎞⎟⎟⎟⎠ (2.143)

where Γjk’s are N × N diagonal matrices. Therefore,

Γ−1 =

⎛⎜⎜⎜⎝
Σ11 · · · Σ1q

...
. . .

...

Σq1 · · · Σqq

⎞⎟⎟⎟⎠ (2.144)

where Σjk’s are also N ×N diagonal matrices. This implies that U [m] =
0.

When r > q, we use the permutability of Darboux transformations
and suppose ρ1 �= 0, · · ·, ρr−q �= 0, ρr−q+1 = · · · = ρr = 0. Then, after
the action of D(r−q)(λ) · · ·D(1)(λ), the derived H

(r−q)
r−q+1 and H

(r−q)
r have

the same asymptotic form as Hr−q+1 and Hr respectively, provided that
the constant vectors κr−q+1 and κr are changed to κ

(r−q)
r−q+1 and κ

(r−q)
r .

Therefore, as in the case r = q, the limits of the components of U [m] are
all zero. This proved part (2).

Now we prove part (3). First consider the case r = 2. Suppose H̊j is
given by (2.142) (j = 1, 2) and l1 �= l2. Denote

θ12 =
κ∗

1κ2√
κ∗

1κ1κ∗
2κ2

, (2.145)



2+1 dimensional integrable systems 95

g12 = 1 − 4 Im λ1 Imλ2

|λ2 − λ̄1|2 |θ12|2 > 0, (2.146)

then, by direct calculation, we have

lim
s→∞U

[m]
l1,l2

exp(i(φ2 − φ1)s) =
2i(Jl2 − Jl1) Im λ1 Im λ2θ12

λ̄2 − λ1
·

· exp(i(ψ1 − ψ2))√
g12 cosh(π1 + π2 − δ1) + cosh(π1 − π2 − δ2)

,

δ1 =
1
2

ln g12 +
1
2

ln(κ∗
1κ1κ

∗
2κ2) + 2 ln

∣∣∣∣λ2 − λ1

λ2 − λ̄1

∣∣∣∣ ,
δ2 =

1
2

ln
κ∗

1κ1

κ∗
2κ2

,

(2.147)

and U
[m]
µν → 0 if (µ, ν) �= (l1, l2).

When r > 2, we still use the permutability of Darboux transforma-
tions and suppose ρ1 �= 0, · · ·, ρr−2 �= 0, ρr−1 = ρr = 0. As in the proof
of part (2), after the action of D(r−2)(λ) · · ·D(1)(λ), the derived H

(r−2)
r−1

and H
(r−2)
r have the same asymptotic form as Hr−1 and Hr respectively,

provided that the constant vectors κr−1 and κr are changed to κ
(r−2)
r−1

and κ
(r−2)
r . Therefore, as in the case r = 2, the limit of Ulr−1,lr has the

desired form, and the limits of the other components of U [m] are all zero.
The theorem is proved.

Now we can discuss the properties of the solution U [m].

(1) Localization of the solutions
For the Lax pair (2.108),

Qα = iλα(x + Jy) + iω(λα)t. (2.148)

Consider the limit of the solution as (x, y) → ∞ along a straight line
x = ξ + vxs, y = η + vys (v2

x + v2
y > 0), then

Qα = iλα(ξ + Jη) + iω(λα)t + iλα(vx + Jvy)s. (2.149)

Now

ρα = Re (iλα(vx + Jlαvy)) = − Im λα(vx + Jlαvy). (2.150)

If there is at most one ρα = 0, then part (1) of Theorem 2.12 implies
that U [m] → 0 as s → ∞. If ρα = 0, ρβ = 0 (α �= β), then lα = lβ
since Jlα �= Jlβ if lα �= lβ. Hence, part (2) of Theorem 2.12 also implies
U [m] → 0 as s → ∞. Therefore, we have
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Theorem 2.13 U [m] → 0 as (x, y) → ∞ in any directions.

(2) Asymptotic behavior of the solutions as t → ∞
Now we use a frame (ξ, η) which moves in a fixed velocity (vx, vy),

that is, let x = ξ + vxt, y = η + vyt, then

Qα = iλα(ξ + Jη) + (iλα(vx + Jvy) + iω(λα))t, (2.151)

ρα = − Im λα(vx + Jlαvy) − Im(ωlα(λα)). (2.152)

Suppose that for distinct α, β, γ,

det

⎛⎜⎜⎝
1 Jlα σα

1 Jlβ σβ

1 Jlγ σγ

⎞⎟⎟⎠ �= 0 (2.153)

where
σα = Im(ωlα(λα))/ Im(λα). (2.154)

Then there are at most two ρα = 0 (α = 1, · · · , r). By Theorem 2.12,
U

[m]
lα,lβ

�→ 0 only if ρα = 0, ρβ = 0. This leads to

vx =
Jlασβ − Jlβσα

Jlβ − Jlα

, vy =
σα − σβ

Jlβ − Jlα

. (2.155)

For U
[m]
jk �→ 0, α, β can take mj and mk values respectively, hence

there are at most mjmk velocities (vx, vy) such that U
[m]
jk �→ 0. Therefore,

we have

Theorem 2.14 Suppose (2.153) is satisfied. Then as t → ∞, the
asymptotic solution of U

[m]
jk has at most mjmk peaks whose velocities

are given by (2.155) (lα = j, lβ = k). If a peak has velocity (vx, vy),
then, in the coordinate ξ = x − vxt, η = y − vyt, limt→∞ Uab = 0 for all
(a, b) �= (j, k), and as t → ∞

U
[m]
jk ∼ Bαβ exp(i Re(λα − λβ)ξ + i(λαJj − λβJk)η + i(φα − φβ)t)

∆
,

∆ = Aαβ cosh( Im(λα + λβ)ξ + Im(λαJj + λβJk)η + δ
(1)
αβ )

+ cosh( Im(λα − λβ)ξ + Im(λαJj − λβJk)η + δ
(2)
αβ )

(2.156)
where Aαβ, δ

(1)
αβ , δ

(2)
αβ are real constants, Aαβ > 0, and Bαβ are complex

constants,

φγ = Re λγ(vx + Jlγvy) + Re(ωlγ (λγ)) (γ = α, β). (2.157)
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Remark 23 The condition (2.153) implies that the velocities of the soli-
tons are all different. This is true for the DSI equation. However, for
the 2+1 dimensional N-wave equation, all the solitons move in the same
velocity. We shall discuss this problem later.

Example 2.15 DSI equation
Let n = 2, N = 2,

J =

⎛⎝ 1 0

0 −1

⎞⎠ , U =

⎛⎝ 0 u

−ū 0

⎞⎠ , ω = −2iJλ2, (2.158)

then we have

Fy = JFx + UF,

Ft = 2iJFxx + 2iUFx + i

⎛⎝ |u|2 + 2q1 ux + uy

−ūx + ūy −|u|2 − 2q2

⎞⎠F,
(2.159)

− iut = uxx + uyy + 2|u|2u + 2(q1 + q2)u,

q1,x − q1,y = q2,x + q2,y = −(|u|2)x,
(2.160)

(FF ∗)D =
1
2

⎛⎝ q1 0

0 q2

⎞⎠ , [J, FF ∗] = Ux. (2.161)

(2.160) is the DSI equation.
If we construct the solution U [m] as above, then Theorem 2.13 implies

that U [m] → 0 as (x, y) → ∞ in any directions. If Re λα �= Re λβ

for α �= β and lα = lβ, then, Theorem 2.14 implies that as t → ∞,
the derived solution u has at most m1m2 peaks (m1 + m2 = r). From
(2.154), σα = −4Jlα Re λα, hence (2.155) implies that each peak has the
velocity vx = 2 Re(λα − λβ), vy = 2 Re(λα + λβ) (lα = 1, lβ = 2). This
is the (m1, m2) solitons [30]. When K = 1, these peaks do not vanish if
and only if all κα’s are non-zero.

Figures 2.5 – 2.7 show the solitons u[1,3], u[2,3] and u[3,3] respectively.
The parameters are K = 1, t = 2, λ1 = 1− 2i, λ2 = −3− i, λ3 = 2 + i,
λ4 = −1 + 3i, λ5 = 2 + 1.5i, λ6 = −0.5 − 1.5i, C1 = (1, 0), C2 = (0, 1),
C3 = (0, 2), C4 = (0,−2), C5 = (2, 0), C6 = (−2, 0).

(3) Asymptotic solutions as the phases differences tend to
infinity

For the equations whose solitons move in the same speed, like the
2+1 dimensional N-wave equation, the peaks do not separate as t → ∞.
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Figure 2.5. u[1,3] of the DSI equation

Figure 2.6. u[2,3] of the DSI equation

However, we can still see some peaks in the figures. Here we will get the
corresponding asymptotic properties of the solitons.

Theorem 2.16 Let pα (α = 1. · · · , r) be constant real numbers satisfy-
ing

det

⎛⎜⎜⎝
1 Jlα pα/ Im λα

1 Jlβ pβ/ Im λβ

1 Jlγ pγ/ Im λγ

⎞⎟⎟⎠ �= 0 (2.162)

for distinct α, β, γ. Let dα be complex constant K × 1 vectors, κα =
dα exp(pατ) and construct the Darboux transformations as above. Let
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Figure 2.7. u[3,3] of the DSI equation

x = ξ + vxτ , y = η + vyτ , then, for any j, k with 1 ≤ j, k ≤ N , j �= k,
limτ→∞ U

[m]
jk �= 0 only if (vx, vy) takes specific mjmk values.

Proof. Here

Qα = iλα(ξ + Jη) + iω(λα)t + iλα(vx + Jvy)τ. (2.163)

Hence

H̊α
.=

⎛⎝ exp(Q̃α(τ))

Dα

⎞⎠ (2.164)

where
Dα = (0, · · · , 0, dα

lα
, 0, · · · , 0), (2.165)

Q̃α(τ) = iλα(ξ + Jη) + iω(λα)t + (iλα(vx + Jvy) − pα)τ. (2.166)

The real part of the coefficient of τ in Q̃α(τ) is

ρ̃α = − Im λα(vx + Jvy) − pα. (2.167)

Condition (2.162) implies that there are at most two ρ̃α’s such that
ρ̃α = 0. According to Theorem 2.12, as τ → ∞, U

[m]
jk �→ 0 only if there

exist ρ̃α = 0, ρ̃β = 0, α �= β, lα = j, lβ = k. Therefore, the theorem is
verified.

When the condition (2.153) holds, this theorem is useless, because the
evolution will always separate the peaks. However, when (2.153) does
not hold, especially when it is never satisfied, this theorem reveals a fact
of the separation of the peaks.
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Example 2.17 2+1 dimensional N-wave equation
Let n = 1, ω = Lλ where L = diag(L1, · · · , LN ) is a constant real

diagonal matrix such that Lj �= Lk for j �= k. Then, the integrability
conditions (2.109) – (2.112) imply

Fy = JFx + UF, Ft = LFx + V F, (2.168)
[J, V ] = [L, U ], Ut − Vy + [U.V ] + JVx − LUx = 0, (2.169)
Ux = [J, FF ∗]. (2.170)

(2.169) is just the 2+1 dimensional N-wave equation.
Suppose U [m] is constructed as above, then Theorem 2.13 implies that

U [m] → 0 as (x, y) → ∞ in any directions. Theorem 2.14 cannot be
applied here. The reason is: the condition (2.153) holds only if lα �= lβ
for α �= β. Hence for any j, mj = 0 or 1. This implies that (2.153) does
not hold generally unless mj = 0 or 1 for all 1 ≤ j ≤ N . Therefore,
we apply Theorem 2.16 to the previous problem. Theorem 2.16 implies
that if we choose {pα} such that (2.162) is satisfied, then, for each (j, k),
limτ→∞ U

[m]
jk has at most mjmk peaks. When K = 1, these peaks do not

vanish if and only if all κα’s are non-zero.

Remark 24 Here τ → ∞ means that the phase differences of different
peaks tend to infinity. Therefore, the peaks are separated by enlarging
the phase differences.

Here are the figures describing the solutions U [0,1,2] and U [1,1,2] of the
3-wave equation. The vertical axis is (|u12|2 + |u13|2 + |u23|2)1/4 so that
all the components are shown in one figure. The parameters are

J =

⎛⎜⎜⎝
1

0

−1

⎞⎟⎟⎠ L =

⎛⎜⎜⎝
2

−1

1

⎞⎟⎟⎠
K = 1, t = 10, λ1 = 1 − 2i, λ2 = −3 − i, λ3 = 2 + i, λ4 = −1 + 3i,
C1 = (0, 1, 0), C2 = (0, 0, 1), C3 = (0, 0, 4096), C4 = (1, 0, 0). Note that
for U [0,1,2], only U23 has two peaks, and for U [1,1,2], U12, U13, U23 have
one, two, two peaks respectively.
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Figure 2.8. U [0,1,2] of the 3-wave equation

Figure 2.9. U [1,1,2] of the 3-wave equation
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